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ISOPERIMETRIC INEQUALITIES FOR RAMANUJAN
COMPLEXES AND TOPOLOGICAL EXPANDERS

Tali Kaufman, David Kazhdan and Alexander Lubotzky

Abstract. Expander graphs have been intensively studied in the last four decades
(Hoory et al., Bull Am Math Soc, 43(4):439–562, 2006; Lubotzky, Bull Am Math
Soc, 49:113–162, 2012). In recent years a high dimensional theory of expanders has
emerged, and several variants have been studied. Among them stand out coboundary
expansion and topological expansion. It is known that for every d there are unbounded
degree simplicial complexes of dimension d with these properties. However, a major
open problem, formulated by Gromov (Geom Funct Anal 20(2):416–526, 2010), is
whether bounded degree high dimensional expanders exist for d ≥ 2. We present an
explicit construction of bounded degree complexes of dimension d = 2 which are topo-
logical expanders, thus answering Gromov’s question in the affirmative. Conditional
on a conjecture of Serre on the congruence subgroup property, infinite sub-family
of these give also a family of bounded degree coboundary expanders. The main tech-
nical tools are new isoperimetric inequalities for Ramanujan Complexes. We prove
linear size bounds on F2 systolic invariants of these complexes, which seem to be
the first linear F2 systolic bounds. The expansion results are deduced from these
isoperimetric inequalities.
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1 Introduction

A classical result of Boros and Füredi [BF84] (for d = 2) and Bárány [Bar82] (for
general d ≥ 2) asserts that there exists εd > 0 such that given any set of n points
in R

d, there exists z ∈ R
d which is contained in at least εd-fraction of the

(
n

d+1

)

simplicies determined by the set. Gromov [Gro10] changed the perspective of this
result by strengthening and generalizing it in the following way.

Definition 1.1. Let X be a d-dimensional pure simplicial complex with a set X(0)
of vertices and denote by X(d) the set of d-dimensional faces.

1. We say that X has the ε-geometric overlapping property, for some 0 < ε ∈ R,
if for every f : X(0) → R

d, there exists a point z ∈ R
d which is covered by

at least ε-fraction of the images of the faces in X(d) under f̃ . Here, f̃ is the
(unique) affine extension of f .

2. We say that X has the ε-topological overlapping property, if the same conclu-
sion holds for every continuous extension f̃ : X → R

d of f .
3. A family of d-dimensional simplicial complexes is a geometric (resp. topological)

expander if all of them have the ε-geometric (resp. topological) overlapping
property for the same ε > 0.

Barany’s theorem is, therefore, the statement that, for every d, Δ(d)
n —the com-

plete d-dimensional simplicial complex on n vertices of dimension d are geometric
expanders. Gromov proved the remarkable result, saying that they are also topo-
logical expanders (The reader is encouraged to think about the case d = 2 to see
how non-trivial is this result and even somewhat counter intuitive!) Moreover, he
went ahead and showed that various other families of simplicial complexes (of fixed
dimension d) have the topological overlapping property, e.g., spherical buildings (see
[Gro10,LMM]).

All the examples shown by Gromov are of simplicial complexes of unbounded de-
grees, i.e., the number of d-faces containing a fixed vertex (or even the number of d
faces containing a (d−1)-face) is unbounded along the family. He suggested [Gro10,
p.422] that 2-dimensional Ramanujan complexes (see below) coming from a fixed lo-
cal non-archimedean field F , form a family of bounded degree topological expanders
“if such at all exist. . . ” in his words. He showed that they have a weaker property,
namely, the conclusion of Definition 1.1(2) holds if f̃ is k to 1 on faces, for some fixed
k. Even the question of existence of families which are bounded degree geometric
expanders for general d was left open in [Gro10].
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The later question, i.e. the question of existence of families of simplicial complexes
of bounded degree with the geometric overlapping property was resolved by Fox et al.
[FGLNP12] in a satisfactory way (and in several ways). They showed, for example,
the following result.

Theorem 1.2. Let d ≥ 2 and fix a sufficiently large prime power q: If F is a local
non-archimedean field of residual degree q, then the Ramanujan complexes quotients
of the Bruhat–Tits building associated with PGLd+1(F ) are d-dimensional bounded
degree geometric expanders.

However, they also left open the question of existence of bounded degree topo-
logical expanders.

In [LM15] a model of random 2-dimensional complexes of bounded edge degree
is presented. These complexes are shown to be topological expanders, but they, also,
have unbounded (vertex) degree.

In this paper we show, for the first time, the existence of bounded degree 2-
dimensional topological expanders. We fell short from proving that Ramanujan com-
plexes of dimension 2 are themselves topological expanders, but we prove:

Theorem 1.3. Fix a sufficiently large prime power q and let F = Fq((t)). Let
{Xa}a∈A be the family of 3-dimensional non-partite Ramanujan complexes obtained
from the Bruhat–Tits building associated with PGL4(F ) [LSV05]. For each such Xa,

let Ya = X
(2)
a —the 2-skeleton of Xa. Then, the family of 2-dimensional simplicial

complexes {Ya}a∈A is an infinite family of bounded degree topological expanders.

For a comprehensive discussion of expanders and high dimensional expanders
please refer to Hoory et al. [HLW06] and Lubotzky [Lub12]. The results of this
paper were announced in Kaufman et al. [KKL14].

Before elaborating on the method of proof, let us start by relating the above
mentioned results to the notion of coboundary expanders as (essentially) been defined
by Linial and Meshulam [LM06] in a completely different context. Their motivation
was to generalize to complexes the Erdos–Rèyni theory of random graphs.

To introduce this and to present the main technical results of this paper we need
few notations: Let X be a pure d-dimensional simplicial complex (i.e., every maximal
simplex is d-dimensional). For −1 ≤ i ≤ d, let X(i) be the set of i-cells of X and
for σ ∈ X(i), denote c(σ) = |{τ ∈ X(d)|σ ⊆ τ}| and w(σ) = c(σ)

(d+1
i+1)|X(d)| . This weight

function on X(i) defines a “norm” on Ci = Ci(X, F2) = {f : X(i) → F2} by ‖α‖ =∑
σ∈α w(σ), where α ∈ Ci is considered also as the subset {σ ∈ X(i) | α(σ) �= 0} of

X(i). As usual δ = δi : Ci → Ci+1 is the coboundary map δ(α)(σ) =
∑

τ⊆σ,|τ |=i α(τ)
for α ∈ Ci and σ ∈ X(i + 1). As δi ◦ δi−1 = 0, Bi ⊆ Zi where Bi = Im(δi−1) (resp.
Zi = Ker(δi)) is the space of i-coboundaries (resp. i-cocycles).
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Definition 1.4.

1. (F2-coboundary expansion) For i = 0, 1, . . . , d − 1, denote

εi(X) := min

{‖δiα‖
‖[α]‖ | α ∈ Ci\Bi

}
.

When [α] = α + Bi and ‖[α]‖ = min{‖γ‖ | γ ∈ [α]}.
2. (F2-cocycle expansion) For i = 0, 1, . . . , d − 1, denote

ε̃i(X) := min

{ ‖δiα‖
‖{α}‖ | α ∈ Ci\Zi

}
.

When {α} = α + Zi and ‖{α}‖ = min{‖γ‖ | γ ∈ {α}}.
3. (Cofilling constant) The i-th cofilling constant of X, 0 ≤ i ≤ d − 1, is

μi(X) =: max
0�=β∈Bi+1

{
1

‖β‖ min
α∈Ci,δα=β

‖α‖
}

.

If {Xj}j∈J is a family of d-dimensional simplicial complexes with εi(Xj) ≥ ε
(resp. ε̃i(Xj) ≥ ε) for some ε > 0 and every 0 ≤ i ≤ d − 1 and j ∈ J , we say that
this is a family of coboundary (resp. cocycle) expanders. Note that {Xj}j∈J is a
family of cocycle expanders iff there exists M ∈ R such that μi(Xj) ≤ M for every
i = 0, . . . , d − 1 and j ∈ J .

As B0 = {0,1}, one easily checks that ε0 = ε0(X) is the normalized Cheeger con-
stant of the 1-skeleton of X, so the εi’s deserve to be considered as a generalization
of the notion of expansion of graphs. Meshulam and Wallach [MW09] on one hand
and Gromov [Gro10] on the other hand showed that Δ(d)

n form a family of cobound-
ary expanders. But, also in these works the existence of coboundary expanders of
bounded degree remained open.

It is easy to see that μi = 1
ε̃i

and that if εi(X) > 0 then H i(X, F2) = 0, in which
case μi = 1

εi
. A family of coboundary expanders is therefore a family with bounded

filling norms, but not vise versa. Also, for d-dimensional coboundary expanders the
F2 cohomology vanish for every i < d.

Ramanujan complexes are in general not coboundary expanders. In fact we will
show:

Proposition 1.5. Let d ≥ 2, F = Fq((t)) and B = Ãd(F ) the Bruhat–Tits building
associated with PGLd+1(F ). Then, B has infinitely many quotients X which are
Ramanujan complexes with both H1(X, F2) and H2(X, F2) non-zero.

Proposition 1.5 should be compared with a well known result of Garland [Gar73]
asserting that for such X, the real i-cohomology always vanish, i.e., H i(X, R) = 0,
for every i < d.

A deep result of Gromov [Gro10] asserts that coboundary expanders are topo-
logical expanders. While there are several methods to prove geometric overlapping
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[FGLNP12,Par13], this is essentially the only known method to prove topological
overlapping. As Proposition 1.5 shows, Ramanujan complexes, in general, are not
coboundary expanders (see further discussion in Section 3.2 and in Section 8). By the
same reason, the Ya’s of Theorem 1.3 are not coboundary expanders. We are still able
to show that they are topological expanders due to two reasons. First, the following
result [DKW] which extends Gromov’s criterion to the cases where the cohomology
does not necessarily vanish. Unfortunately, we need some more notations.

Definition 1.6. For a finite d-dimensional simplicial complex X and 1 ≤ i ≤ d − 1
denote

systi(X) = min{‖α‖ | α ∈ Zi(X, F2)\Bi(X, F2)}.

(Write systi(X) = ∞ if H i(X, F2) = 0.) This is the i-cohomological systole of X
over F2.

Theorem 1.7. Given 0 < μ, η ∈ R, and d ∈ N, there exists c = c(d, μ, η) > 0 such
that if X is a finite pure simplicial complex of dimension d satisfying:

1. For every 0 ≤ i ≤ d − 1, μi(X) ≤ μ.
2. For every 0 ≤ i ≤ d − 1, systi(X) ≥ η.

Then X has the c-topological overlapping property.

In different words, cocycle expanders with large systole are topological expanders.
A proof of Theorem 1.7 is given in [DKW].
Thus, to prove Theorem 1.3, it suffices to prove that the Ya’s of Theorem 1.3

satisfy both conditions (1) and (2) of Theorem 1.7. To this end we will prove the
following isoperimetric result(s):

Theorem 1.8. Fix q � 0. Let F be a local field of residue degree q, B = Ã3(F )
the 3-dimensional Bruhat–Tits building associated with PGL4(F ). Then there exist
η0, η1, η2, ε0, ε1, ε2 all greater than 0 such that: if X is a non-partite Ramanujan
quotient of B = Ã3(F ) and α ∈ Ci(X, F2), 0 ≤ i ≤ 2, a locally minimal cochain with
‖α‖ ≤ ηi then ‖δi(α)‖ ≥ εi‖α‖.

Information on general short locally minimal cochains of d-dimensional complex
gives information on general cochains of its d−1 skeleton. So from Theorem 1.8 one
can deduce (see Section 4) the following corollary, which with Theorem 1.7 implies
Theorem 1.3.

Corollary 1.9. Let Y be the 2-skeleton of X of Theorem 1.8, then it satisfies (1)
and (2) of Theorem 1.7.

The concept of locally minimal cochain is quite central in our work, but too
technical to be defined in the introduction—see Definition 2.4 below. We believe
that the above six constants of Theorem 1.8 can be made to be independent of q,
but as of now we know this only for some of them.
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Theorem 1.8 is best possible: it is not true without the assumption that ‖α‖ is
small. As mentioned before, the Ramanujan complexes are in general not coboundary
expanders: For i = 1 or i = 2 (but not for i = 0), it is possible to find a locally
minimal α ∈ Ci\Bi with δi(α) = 0.

It is interesting to observe that in order to prove that the Ya’s of Theorem 1.3
are topological expanders we have to prove the above isoperimetric results for the
Xa’s. Of course at level i = 0, 1, Ya and Xa are the same, but for i = 2, δ2 is zero on
C2(Ya, F2) but non-zero on C2(Xa, F2). We refer the reader to Section 4 to see how
the information on Xa helps to deduce the desired result for Ya.

Our main technical result is Theorem 1.8. Before proving this theorem, we will
give a “baby version” of it for 2-dimensional Ramanujan complexes. This case is
easier (for reasons to be understood in Sections 6 and 7) though still far from trivial,
and the main ideas of the proof of Theorem 1.8 show up already there. It also has
some independent interest (see Corollary 1.11 below and the discussion following it).
In this case we can also give a very sharp estimates on the constants, which are also
independent of q:

Theorem 1.10. Given ε0 > 0, there exists q(ε0) ∈ N and 0 < ε ∈ R such that: Let
X be a 2 dimensional Ramanujan complex, a quotient of the Bruhat–Tits building
of PGL3(Fq((t))) with q ≥ q(ε0). Let α ∈ C1(X, F2) be a locally minimal 1-cochain,
with ‖α‖ < 1

4(1+ε0)
. Then ‖δ1(α)‖ ≥ ε‖α‖.

Every locally minimal α ∈ C1(X, F2) satisfies ‖α‖ ≤ 1
2 (see Section 2.3). So, the

theorem says that if α has slightly less than half of the maximal number of edges of a
locally minimal cochain, its coboundary is “large”. This is essentially best possible,
as we will show (Proposition 3.5) that there are non-zero locally minimal cochains
α with δ(α) = 0.

The above isoperimetric results and their proofs give various (mod 2) systolic
inequalities. These seem to be the first linear lower bound on cohomological systole.
Such lower bounds are of importance for quantum error correcting codes. They are
needed for the estimate of the distance of the so called CSS-quantum codes [MFL02,
Zem09,GL14]. For example we have:

Corollary 1.11. Given ε0 > 0, there exists q(ε0) ∈ N such that: If X is a non-
partite Ramanujan complex of dimension 2, a quotient of the Bruhat–Tits building
of PGL3(Fq((t))) with q ≥ q(ε0), and α ∈ Z1(X, F2)\B1(X, F2), i.e., a 1-cocycle
which represents a non-trivial cohomology class, then ‖α‖ ≥ 1

4(1+ε0)
.

Ramanujan complexes of dimension 2 are in many ways non-archimedean ana-
logue of 2-dimensional manifolds, i.e. Riemann surfaces. It is interesting to compare
the systolic behavior. For arithmetic hyperbolic surfaces, the 1-homological systole is
logarithmic and by Poincaré duality the same holds for the 1-cohomological systole.
For the Ramanujan complexes the 1-homological systole is still logarithmic but the
1-cohomological systole is linear!
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See more in Section 7 where such linear lower bounds are proved also for 2-
cocycles of 3-dimensional complexes.

The paper is organized as follows. In Section 2 we introduce the basic coho-
mological notations (over F2), and the (local)-minimality of cochains. In Section 3,
we review the spherical and affine buildings and the properties of Ramanujan com-
plexes. In Section 4 we show how, assuming Theorem 1.8, one can prove Theorem 1.3,
leaving the (quite technical) proof of Theorem 1.8 to Section 6 (cases i = 0, 1) and
Section 7 (case i = 2). To illustrate first the main ideas of the proof of Theorem 1.8
in an easier case, we give in Section 5 a proof of Theorem 1.10. In Section 8 we show
that our results combined with Serre’s conjecture [Ser70] on the congruence sub-
group property give bounded degree 2-dimensional coboundary expanders. Serre’s
conjecture has been proven in most cases, but unfortunately, not in the cases we
need here. In fact, what we need is only the vanishing of H1(Γ, F2) for suitable
congruence subgroups, which is a corollary of Serre’s conjecture, and possibly easier
than it. See Section 8 for more.

Note added in proof The results of this paper have been generalized recently, showing
among other things that for every d ≥ 3, the (d − 1)-skeleton of the d-dimensional
Ramanujan complexes are topological expanders (see [EK15]), assuming that the
residue field is large (depending on d).

2 Coboundary Expansion and Overlapping

In this section we review some notations and results on general simplicial complexes.

2.1 Expansion of graphs. Let X = (V, E) be a finite connected graph, A =
AX its adjacency matrix and Δ its Laplacian, i.e., Δ : L2(X) → L2(X) is defined
by Δ(f)(v) = deg(v)f(v) − ∑

y∼v f(y) where the sum is over the neighbors of v. If
X is k-regular then Δ = kI − A. It is well known that the eigenvalues of Δ (and A)
are intimately connected with expansion properties of X. Let us mention a variant
which we need, due to Alon and Milman [Lub94, Prop 4.2.5].

Proposition 2.1. Let λ1(X) be the smallest positive eigenvalue of Δ. Then, for
every subset W ⊆ V,

1. |E(W, W̄ )| ≥ |W ||W̄ |
|V | λ1(X), where E(W, W̄ ) denotes the set of edges from W

to its complement W̄ .
2. If X is k-regular then E(W ) := E(W, W ) = 1

2(k|W | − E(W, W̄ )) ≤ 1
2(k −

|W̄ |
|V | λ1(X))|W |.

We will also need the following variant for bipartite bi-regular graphs, whose
proof can be found for example in [EGL].
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Proposition 2.2 (Mixing Lemma for bipartite bi-regular graphs). Let X = (V ′,
V ′′, E) be a bipartite (k′, k′′)-bi-regular finite graph. Then, for every subsets A ⊆ V ′,
B ⊆ V ′′,

|E(A, B)| −
√

k′k′′|A||B|
√|V ′||V ′′| | ≤ λ(X)

√
|A||B|,

where λ(X) is the second largest eigenvalue of the adjacency matrix of X.

2.2 Coboundary expansion of simplicial complexes. Let us now pass to
the higher dimensional case, so from now on X will be a finite d-dimensional sim-
plicial complex with a set of vertices V = X(0). Namely, X is a set of subsets of
V with F1 ∈ X and F2 ⊆ F1 implies F2 ∈ X and max{|F | |F ∈ X} = d + 1. For
F ∈ X, dim(F ) := |F | − 1, and X(i) denotes the set of cells of dimension i, i.e.,
those F with |F | = i + 1. So, X(−1) = {∅}. By X(i) we denote the i-skeleton of X,
i.e., X(i) = ∪j≤iX(j). We say that X is a pure complex if all maximal cells (facets)
in X are of the same dimension. All the simplicial complexes dealt in this paper are
pure. Let Ci = Ci(X, F2) be the space of i-cochains, i.e., {f : X(i) → F2}. It will be
sometimes convenient to think of α ∈ Ci as a collection of i-cells and we will denote
its cardinality by |α|.

For σ ∈ X(i), we denote

c(σ) := |{τ ∈ X(d)|σ ⊆ τ}| (1)

and

w(σ) :=
c(σ)

(
d+1
i+1

)|X(d)| . (2)

Note that
∑

σ∈X(i) w(σ) = 1. The weight function w on X(i) defines a norm on
Ci(X, F2) by

‖α‖ :=
∑

σ∈α

w(σ), (3)

where again we consider α as a collection of i-cells. Note that ‖α‖ ≤ 1.
Let δ = δi : Ci → Ci+1 be the coboundary map, i.e., for σ ∈ X(i + 1)

δi(α)(σ) =
∑

τ⊆σ, dimτ=i

α(τ).

Note that as we are working over F2, we can ignore the issue of orientation. It
is easy to see that δi+1 ◦ δi = 0. Denote Bi = Bi(X, F2) and Zi = Zi(X, F2) the
i-coboundaries (Imδi−1) and the i-cocycles (Kerδi), respectively. Then, Bi ⊆ Zi and
H i = H i(X, F2) = Zi/Bi is the (reduced) i-cohomology group over F2.

The reader is referred now back to Definition 1.4 for the definitions of coboundary
expansion, cocycle expansion and the cofilling constants.
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2.3 Notions of minimality. Given a pure simplicial complex X of dimension
d and τ a simplex of X, the link Xτ of X at τ is the set of all sets of the form
σ\τ , where σ ∈ X and τ ⊆ σ. Then, Xτ is a complex, with set of vertices {π ∈
X(0)|π ∪ τ ∈ X(dim(τ) + 1)}, of dimension dim(X) − dim(τ) − 1. In particular, for
a vertex v, the link Xv of v is of dimension d − 1. A cochain α ∈ Ci(X, F2) defines a
cochain αv ∈ Ci−1(Xv, F2), by αv(σ\{v}) = α(σ) for every σ ∈ X(i) containing v.

Throughout this paper we assume that our simplicial complexes are homogenous
in the following sense: the structure of Xv is independent of v, i.e., the links of all
the vertices are isomorphic. In particular |Xv(d−1)| is independent of v. Under this
assumption we have:

Lemma 2.3. For α ∈ Ci(X, F2), ‖α‖ = 1
|X(0)|

∑
v∈X0

‖αv‖.

Proof. By our assumption |X(d)| = 1
d+1 |X(0)||Xv(d − 1)|. Now

∑

v∈X(0)

‖αv‖ =
∑

v∈X(0)

∑

σ∈αv

w(σ) =
∑

v∈X(0)

∑

σ∈αv

cXv
(σ)

(
d
i

)|Xv(d − 1)| (4)

=
∑

σ∈α

∑

v∈σ

cX(σ)
(
d
i

)
d+1

|X(0)| |X(d)| =
∑

σ∈α

(i + 1)cX(σ)|X(0)|
(
d
i

)
(d + 1)|X(d)| (5)

= |X(0)|
∑

σ∈α

cX(σ)
(
d+1
i+1

)|X(d)| = |X(0)| · ‖α‖. (6)

��
Let us now discuss few notions of minimality.

Definition 2.4. 1. A cochain α ∈ Ci(X, F2) is called minimal if it is of minimal
norm in its class modulo Bi(X, F2), i.e., ‖α‖ ≤ ‖α+ δi−1γ‖ for every γ ∈ Ci−1.
This is equivalent to ‖α‖ = dist(α, Bi) where the distance between a vector α
and a subspace W is defined as dist(α, W ) = min{‖γ‖ | α + γ ∈ W}.

2. A cochain α ∈ C0(X, F2) will be called locally minimal if it is minimal while
for i ≥ 1, α ∈ Ci(X, F2) is called locally minimal if for every vertex v of X, αv

is a minimal (i − 1)-cochain in Ci−1(Xv, F2).

Every minimal cochain is locally minimal, but not every locally minimal cochain
is minimal [BV]. To prove coboundary expansion, one can, in principle, consider
only minimal cochains. But, in our work, it is crucial that Theorem 1.8 is proved for
the more general case of locally minimal cochain. This is used in an essential way
in Section 4 to deduce topological expansion for the Ya’s of Theorem 1.3 from the
isoperimetric inequalities proved for the Xa’s. Every α ∈ Ci is equivalent modulo
Bi to a locally minimal one, in fact, even one which is not too far from it.

Proposition 2.5. Assume X is a finite homogeneous pure d-dimensional complex.
In particular, every v ∈ X(0) lies in m(i) i-simplicies. Then:
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1. For every α ∈ Ci(X, F2), there exists a locally minimal α′ ∈ Ci(X, F2) with
α′ ≡ αmod Bi(X, F2)), ‖α′‖ ≤ ‖α‖ and α′ = α+δi−1(γ) where γ ∈ Ci−1(X, F2)
with ‖γ‖ ≤ c‖α‖, where c = d+1−i

i+1 m(i − 1).
2. If for some i ≤ d, c(σ) (see Equation (1) in Section 2.2) is constant on the

simplicies σ ∈ X(i), then for α ∈ Ci(X, F2), ‖α‖ is the normalized counting

norm, i.e., ‖α‖ = |α|
|X(i)| . If α is also locally minimal, then for every vertex

v ∈ X(0), if we consider αv as a set of (i − 1)-cells in Xv(i − 1), we have

|αv| ≤ |Xv(i−1)|
2 .

Note, if X is homogenous then c(v) is constant on vertices but not necessarily so
for i-cells.

Proof. If α is locally minimal there is nothing to prove. If not, then for some v,
‖αv + γ‖ < ‖αv‖ for some γ ∈ Bi−1(Xv, F2). Define γ̃ ∈ Ci(X, F2) by γ̃(σ) = 0 if
v /∈ σ and γ̃(σ) = γ(σ\{v}) if v ∈ σ, where σ ∈ X(i). One can easily check that
γ̃v = γ. As γ ∈ Bi−1(Xv, F2), we have γ̃ ∈ Bi(X, F2), in fact, if γ = δi−2(η) for some
η ∈ Xv(i − 2), then γ̃ = δi−1(η̃). Now, replace α by α + γ̃. By doing so, α + γ̃ ≡
α(mod Bi(X, F2)). Moreover, ‖α + γ̃‖ < ‖α‖. It is clear that ‖(α + γ̃)v‖ < ‖αv‖,
but some care is needed (and we can not just apply Lemma 2.3) as γ̃ also influences
other vertices. But, adding γ̃ changes the value of α only on simplicies which contain
the vertex v, and on them it decreases their contribution to the norm of α, i.e.,

∑

v∈σ∈α+γ̃

w(σ) <
∑

v∈σ∈α

w(σ),

since ‖αv + γ‖ < ‖αv‖ and hence ‖α + γ̃‖ < ‖α‖.
The above process terminates since ‖α‖ can get only finitely many values, so

eventually we replace α by a locally minimal cochain in the same class modulo
Bi(X, F2). In fact, the process terminates after at most

(
d+1
i+1

)|X(d)| · ‖α‖ steps,
since for every i-cochain in Ci(X, F2), its norm is an integral multiply of 1

(d+1
i+1)|X(d)| .

In each step the local change is by γ̃ = δ(η̃), and the norm of η̃ is at most
m(i−1)

(d+1
i )|X(d)| . The number of steps is at most

(
d+1
i+1

)|X(d)| · ‖α‖ and so the total change

γ is of norm at most d+1−i
i+1 m(i − 1)‖α‖.

For the proof of the second part, note first that w(σ) is constant on X(i) and∑
σ∈X(i) w(σ) = 1 and hence the norm on Ci(X, F2) is simply the normalized count-

ing norm. Now, we also have that all the (i − 1)-cells of Xv have the same weight
in Xv. If α ∈ Ci(X, F2) is locally minimal and for some v ∈ X(0), αv contains more
than half of the (i−1)-cells of Xv, then for some τ ∈ Xv(i−2), αv contains more than
half of the (i − 1)-cells in Xv containing τ . This implies that ‖αv + δi−2(τ)‖ < ‖αv‖
in contradiction to the minimality of αv, i.e., in contradiction to the local minimality
of α. ��
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3 Buildings and Ramanujan Complexes

In this section we review some notations and results on buildings and their quotients
and prepare some technical results to be used later. We start with spherical buildings.

3.1 Spherical buildings. Let W = F
r
q be an r-dimensional vector space over

the finite field of order q. Denote by S(r, q) the spherical building associated with
PGLr(Fq), i.e., the flag complex of F

r
q. This is the simplicial complex whose vertices

are all the non-zero proper subspaces of W , and i+1 such subspaces u0, . . . , ui form
an i-cell if u0 < u1 < · · · < ui. This is a finite simplicial complex of dimension r − 2,
which is known to be homotopic to a bouquet of (r − 2)-dimensional spheres. In
particular, H i(S(r, q), F2) = 0 for every i = 1, . . . , r − 3. It was shown by Gromov
that these complexes have the overlapping properties [Gro10, p. 457], showing along
the way that they are coboundary expanders.

Theorem 3.1. There exists some constant ε(r) > 0 such that εi(S(r, q)) ≥ ε(r) for
every i = 0, . . . , r − 1 and every prime power q.

For a proof of Theorem 3.1 see [LMM]. We will need only the case r = 4 and i = 1.
But, we will need few more facts on S(r, q) for small values of r. Let S(r, q)(1) be the
1-skeleton of S(r, q), i.e., the graph whose vertices are the non-zero proper subspaces
of F

r
q with two such subspaces are incidence iff one is contained in the other. For r = 3

this is the well studied “points versus lines graph” of the projective plane. This is a
(q + 1)-regular graph whose eigenvalues (of the adjacency matrix) are ±(q + 1) and
±√

q, the later with high multiplicity. In particular, these are Ramanujan graphs (of
unbounded degree). For r > 3, S(r, q)(1) is not regular anymore. Let us look closely
at the case r = 4.

Let Z = S(4, q)(1) be the 1-skeleton of the spherical building of F
4
q , i.e., Z is

the graph whose set of vertices is M = M1 ∪ M2 ∪ M3 where Mi is the set of
subspaces of F

4
q of dimension i. Note that |M1| = |M3| = q4−1

q−1 = q3 + q2 + q + 1

while |M2| =
q4−1
q−1

· q3−1
q−1

q+1 ∼ q4. Two vertices are connected by an edge if one subspace
is contained in the other. One easily checks that every vertex in M1 (resp. M3) is
connected with q2 + q + 1 vertices in M2 and with q2 + q + 1 vertices in M3 (resp.
M1), so its degree is 2(q2 + q + 1). On the other hand, the degree of a vertex in M2

is 2(q + 1), half of the edges go to M1 and half to M3.
The following technical lemma will be needed in Section 7.

Lemma 3.2. Let T = T1∪T2∪T3 ⊆ M be a subset of the vertices of Z with Ti ⊆ Mi.
Assume that with every t ∈ T, a set of edges E(t), coming from t, is given and let
Ẽ =

⋃
t∈T E(t). Assume also

• |T1|, |T3| ≤ q2.75 and |T2| ≤ q3.7.
• for t ∈ T1 ∪ T3, |E(t)| > q1.8 and for t ∈ T2, |E(t)| > q0.9.
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Then,

|E(T, T )|
|Ẽ| = oq(1). (7)

I.e., there exists ε(q) with ε(q) → 0 when q → ∞, s.t. for every choice of T and

{E(t)|t ∈ T} as above, |E(T,T )|
|Ẽ| ≤ ε(q).

Proof. As Z is a 3-partite graph, E(T, T ) = E(T1, T2) ∪ E(T2, T3) ∪ E(T1, T3). It
suffices to prove (7) for each E(Ti, Tj) separately. We can therefore consider the
graphs Zi,j , 1 ≤ i < j ≤ 3 where Zi,j is the bipartite graph whose vertices are
Mi∪Mj and the adjacency relation is as in Z. Note that Z1,2 and Z2,3 are isomorphic
and to prove the result for one is like proving the result for the other. So, we will
prove it only for Z1,2 and Z1,3.

Lemma 3.3. 1. Let A be the adjacency matrix of the graph Z1,3. Then its eigen-
values are ±(q2+q+1), each with multiplicity 1, and ±q with high multiplicity.

2. Let A be the adjacency matrix of the graph Z1,2. Then, its largest eigenvalue

is
√

(q + 1)(q2 + q + 1) and the other eigenvalues are either ±
√

q2 + q or 0.

Proof. The matrix A has a block form A =
(

0 B
Bt 0

)
and hence A2 =

(
BBt 0

0 BtB

)
.

The eigenvalues of BtB and BBt are the same up to multiplicities of zeros. It suffices
therefore to analyze BtB. This is the adjacency matrix of the graph Y with vertex
set M1 and two subspaces u and w in M1 are connected by t edges if in the original
graph there are t paths of length 2 from u to w. Let us now consider separately the
two cases.

1. In Z1,3, a subspace u goes to itself in q2 + q + 1 2-paths according to its
degree in Z1,3. While if u �= w, then u and w are contained in q + 1 subspaces of
dimension 3. Hence, BBt = (q2 + q + 1)I + (q + 1)(J − I) = q2I + (q + 1)J , where
J is the all 1’s matrix. Now J acts as the zero matrix on L2

0(M1) = {f : M1 →
R|∑u∈M1

f(u) = 0} and as |M1|I on the constant functions. Thus, the eigenvalues
of BtB are q2 + (q + 1)(q3 + q2 + q + 1) = (q2 + q + 1)2 and q2 as claimed, and the
same for BBt.

2. This time B and Bt are not square matrices but the argument is similar. In
Z1,2 a subspace u in M1 is connected to itself by q2 + q + 1 2-paths. Two different
1-dimensional subspaces are inside a unique two dimensional subspace and hence
BBt = (q2 +q+1)I +(J −I) = (q2 +q)I +J . Arguing as in part one we deduce that
the eigenvalues of BBt are (q2 + q + 1)(q + 1) and (q2 + q). Thus, the eigenvalues of
A are either ±√

(q2 + q + 1)(q + 1), ±
√

q2 + q or 0. ��
We are ready now to apply Proposition 2.2 for the graphs Z1,3 and Z1,2. Let us

start with G = Z1,3. I.e., A = T1, B = T3 and by Lemma 3.3(1), λ(G) = q. Note,
k′ = k′′ = q2 + q + 1 ≈ q2 and V ′ = V ′′ ≈ q3. By Proposition 2.2,

E(A, B) ≤ q2|A||B|
q3

+ q
√

|A||B| =
|A||B|

q
+ q

√
|A||B|.
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On the other hand, up to a factor of 2, we have

|Ẽ| �
∑

t∈T1∪T3

|E(t)| ≥ q1.8|A| + q1.8|B|.

Let us separate into two cases: |A| < |B| and |A| ≥ |B|. In the first case,

|E(A, B)|
|Ẽ| ≤

|B2|
q + q

√|B||B|
q1.8|B| =

|B|
q2.8

+
1

q0.8
.

As |B| = |T3| was assumed to be less than q2.75, the ratio goes to 0 with q → ∞ as
needed. The second case, i.e., |A| ≥ |B| is symmetric.

Let us now consider the second graph G = Z1.2, A = T1, B = T2, k′ = q2 + q +1,
k′′ = q + 1, V ′ ≈ q3, V ′′ ≈ q4 and by Lemma 3.3(2), λ(G) ≤ 2q. Thus,

E(A, B) ≤
√

q3|A||B|
√

q7
+ 2q

√
|A||B| =

|A||B|
q2

+ 2q
√

|A||B|.

while

|Ẽ| �
∑

t∈T1∪T2

|E(t)| ≥ q1.8|A| + q0.9|B|.

Again, we separate the evaluation to two cases: q1.8|A| < q0.9|B| and q1.8|A| ≥
q0.9|B|. In the first case |A| < q−0.9|B|, Thus:

|E(A, B)|
|Ẽ| ≤

q−0.9|B|2
q2 + 2q

√
q−0.9|B||B|

q0.9|B| =
|B|
q3.8

+
2q

q1.35
.

As |B| < q3.7, this goes to 0 when q → ∞. The second case we consider is when
q1.8|A| ≥ q0.9|B|, so |B| ≤ q0.9|A|. Thus,

|E(A, B)|
|Ẽ| ≤

q0.9|A|2
q2 + 2q

√
q0.9|A||A|

q1.8|A| =
|A|
q2.9

+
2q1.45

q1.8
.

As |A| < q2.75, this goes to 0 when q → ∞. Lemma 3.2 is now proven. ��
3.2 Bruhat–Tits buildings and Ramanujan complexes. Let us move now
to the Bruhat–Tits buildings. Let F be a non-archimedean local field, i.e., F is either
a finite extension of Qp or F = Fq((t)), O its valuation ring, m the unique maximal
ideal in O, π - a generator of m (“uniformaizer”), so m = πO and O/m = Fq.
The Bruhat–Tits building B = Ãd(F ) is an infinite simplicial complex defined as
follows. An O-lattice L of V = F d+1 is a finitely generated O-submodule of V which
spans V . Two such lattices L1 and L2 are equivalent if there exists 0 �= t ∈ F
such that tL1 = L2. The vertices of Ãd(F ) are the equivalence classes of these
lattices and [L0], [L1], . . . , [Li] form an i-cell if there exist representatives L′

i ∈ [Li]
s.t. πL′

0 < L′
i < · · · < L′

2 < L′
1 < L′

0. This is a contractible simplicial complex of
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dimension d, upon which the group G = PGLd+1(F ) acts and the action is transitive
on the vertices. The 1-skeleton B(1) of B is a k-regular graph where k equals the
number of non-zero proper subspaces of F

d+1
q (so for d = 1, B is the (q + 1)-regular

tree and for general d, k =
∑d

i=1

(
d+1

i

)
q

≈ q
(d+1)2

4 ). In fact, the link of every vertex
v of B is isomorphic to the spherical building S(d + 1, q), which is a finite simplicial
complex of dimension d − 1. The local properties of B can be read, therefore, from
S(d+1, q). For example, every (d−1)-cell in B is contained in exactly (q +1) d-cells
of B.

The vertices of B come with a coloring τB in Z/(d+1)Z, defined as follows. Take
an O-basis B for a representative L′ of [L] and denote τ([L]) = val(detB)(mod(d+1)).
This is well defined and no adjacent vertices have the same color. This coloring
is preserved by the action of G0 = PSLd+1(F ) · PGLd+1(O), which is a normal
subgroup of index d+1 in G, but not by that of G. Still, τ induces a coloring on the
oriented edges of B: τ([L1], [L2]) = τ([L1]) − τ([L2])(mod(d + 1)), and this coloring
of the edges is preserved by G. The coloring of the (oriented) edges defines d “Hecke
operators” A1, . . . , Ad as follows: For f ∈ L2(B(0)),

Ai(f)(x) =
∑

{f(y)|(x, y) ∈ B(1), τ((x, y)) = i}.

The operators Ai are normal (though not self adjoint) and commute with each other,
hence can be diagonalized simultaneously.

Every cocompact discrete subgroup Γ of G acts on B and X = Γ\B is a finite
complex. For simplicity we will assume that for every vertex x of B and every
1 �= γ ∈ Γ, dist(γx, x) > 2. This ensures that there are no ramifications and Γ\B is
indeed a simplicial complex. This can always be achieved by replacing Γ by a finite
index subgroup (and by a congruence one if Γ is arithmetic).

Since G (and hence Γ) preserves the coloring of the oriented edges, the operators
Ai are well defined also on L2(X(0)). In [LSV15], the finite complex X is called
Ramanujan if the “non trivial spectrum” of (A1, . . . , Ad) on L2(X(0)) (which is a
subset of C

d) is contained in the spectrum of (A1, . . . , Ad) acting on L2(B(0)) -
see there for exact definitions. The trivial spectrum consists, in general, of at most
d eigenvalues. More precisely, if ΓG0 is of index r in G then Γ\B has r “trivial
eigenvalues” (see [LSV15, Section 2.3 and Proposition 6.7]. For example, for d = 1,
it has either two trivial eigenvalues, if Γ\B is a bipartite graph, or just one, if it is
not. Similarly, if Γ ≤ G0, there are d + 1 trivial eigenvalues or just one if ΓG0 = G.
To avoid the trouble of handling the trivial eigenvalues, we will work all the time
with “non-partite Ramanujan complexes”, i.e., those obtained by lattices Γ with
ΓG0 = G. By [LSV15, Theorem 7.1] there are infinitely many such finite quotients
X = Γ\B.

What is important for us here is the following: A1+· · ·+Ad is acting on L2(X(0))
exactly as the adjacency matrix of the graph X(1) which is a k-regular graph with
k ∼ q

(d+1)2

4 . From the definition of Ramanujan complexes we deduce [LSV15]:
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Corollary 3.4. If X is a non-partite Ramanujan complex, a quotient of B =
Ãd(F ), d ≥ 1, as above, then the second largest eigenvalue of the adjacency matrix

of X(1) is bounded from above by
( d+1
	 d+1

2


)√

k ≤ (d+1)d+1q
(d+1)2

8 and thus λ1(X(1)) ≥
k−(d+1)d+1

√
k, (see Proposition 2.1) so as graphs, for q large w.r.t. d, X(1) is almost

a Ramanujan graph. If d = 2 an improved bound is known: λ1(X(1)) ≥ k − 6
√

k.

From spectral point of view, Ramanujan complexes are excellent high dimensional
expanders, but they are not necessarily “coboundary expanders” in the sense of
Definition 1.4. Indeed, if εi(X) > 0 then H i(X, F2) = 0 but we have the following.

Proposition 3.5. For every d ≥ 1 and every prime power q, there are infinitely
many Ramanujan complexes X, quotients of Ãd(Fq((t))), with H1(X, F2) �= 0.

Proof. As shown in [LSV05], for F = Fq((t)), and for every fixed d, there is an arith-
metic lattice Γ0 < PGLd+1(F ) with infinitely many congruence normal subgroups
Γi �Γ0 such that Γ0/Γi � PSLd+1(qsi) with si → ∞, and Γi\Ãd(F ) is a Ramanujan
complex.

Let S2 be the 2-Sylow subgroup of PSLd+1(qsi) and Γ̃i its preimage in Γ0. Then,
X = Γ̃i\B, being a quotient of a Ramanujan complex, is also Ramanujan. But,

Γ̃i/([Γ̃i, Γ̃i]Γ̃2
i ) � S2/([S2, S2]S2

2) �= {0}.

As B is contractible,

H1(X, F2) = H1(Γ̃i\B, F2) = H1(Γ̃i, F2) = Γ̃i/([Γ̃i, Γ̃i]Γ̃2
i ) �= {0},

and the proposition is proved. ��

A similar result hold also for the second cohomology group.

Proposition 3.6. For every d ≥ 2 and every prime power q, there exist Ramanujan
complexes X, quotients of Ãd(Fq((t))) with H2(X, F2) �= 0.

Remark. Proposition 3.6 is not valid for d = 1. In this case a torsion free cocompact
lattice Γ in PGL2(F ) is a free group, and hence H2(Γ\B, F2) = H2(Γ, F2) = {0}.

We will prove first a purely group theoretic result which may be of independent
interest.

Proposition 3.7. Let Γ be a discrete group, Γ̂ its profinite completion and Γp̂ its
pro-p completion. (We do not assume that Γ is residually finite nor residually-p, so
Γ may not inject into Γ̂ or Γp̂). Then

1. If H2(Γ̂, Fp) �= 0 then H2(Γ, Fp) �= 0.
2. If H2(Γp̂, Fp) �= 0 then H2(Γ, Fp) �= 0.



GAFA ISOPERIMETRIC INEQUALITIES FOR RAMANUJAN 265

Proof. As it is well known, for every discrete or profinite group G, H2(G, Fp) clas-
sifies equivalent classes of central (continuous) extensions E of G by Fp ([RZ00,
Theorem 6.8.4])

1 → Fp → E → G → 1. (8)
Now, H2(G, Fp) = 0 means that every central extension as (8) splits.

Assume there is a non-splitting extension

1 → Fp → E
η−→ Γ̂ → 1. (9)

Let E0 = {(a, b) ∈ Γ × E| i(a) = η(b)} where i : Γ → Γ̂ is the natural map from Γ
to its profinite completion. This gives rise to an extension

1 �� Fp ��

��

E0
π ��

j

��

Γ ��

i
��

1

1 �� Fp �� E
η

�� Γ̂ �� 1

(10)

where π(a, b) = a for (a, b) ∈ E0, and j : E0 → E is defined by j(a, b) = b. Indeed,
π is an epimorphism as for every a ∈ Γ, there exists b ∈ E with η(b) = i(a) since
η is an epimorphism from E onto Γ̂. Moreover, ker(π) = {(a, b) ∈ E0| a = e} =
{(e, b)| η(b) = eΓ̂} � Fp.

We claim that the upper line of (10) is not a splitting sequence. Otherwise, there
exists π′ : Γ → E0 with π ◦ π′ = idΓ. Thus, there exists π̂′ : Γ̂ → Ê0. But, then
ĵ ◦ π̂′ = ĵ ◦ π′ would split (9), a contradiction. This proves (1). The proof of (2) is
similar, replacing profinite completion by pro-p completion. ��
Remark 3.8. We have actually proved that if G is either the profinite of the pro-p
completion of Γ, then the induced map from H2(Γ, Fp) to H2(G, Fp) is injective.

We can now prove Proposition 3.6:

Proof. Let Γ = Γ̃i be as in the proof of Proposition 3.5. As shown there Γ has a non-
trivial finite quotient of 2-power order. Thus, its pro-2 completion is not the trivial
group. It is also not a free pro-p group since Γ has property(T) (note d + 1 ≥ 3)
and hence Γ/[Γ, Γ] is finite. Thus a minimal presentation of the finitely generated
pro-2 group Γ2̂ requires at least one relation and hence by [RZ00, Theorem 7.8.3]
H2(Γ2̂, F2) �= 0. We can apply now Proposition 3.7 to deduce that H2(Γ, F2) �= 0.
As in the proof of Proposition 3.5, we can conclude that H2(X, F2) �= 0. ��

We formulate Propositions 3.5 and 3.6 in the way which is most interesting for us,
i.e., showing that Ramanujan complexes are not necessarily coboundary expanders.
But, in fact, the proofs show that for every cocompact lattice Γ in PGLd+1(F ),
d ≥ 2, has a finite index subgroup Γ′ with H1(Γ′, F2) �= 0 and H2(Γ′, F2) �= 0. We do
not know if analogues results are valid for H i, for i ≥ 3 (and d ≥ i). Our proofs of
Propositions 3.5 and 3.6 use the explicit group theoretic interpretation of the first
and second cohomology groups. No such explicit interpretation is known for H i,
i ≥ 3.
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4 From Isoperimetric Inequalities to Topological Expanders

In this section we show that the isoperimetric inequalities of Theorem 1.8 imply
Theorem 1.3. The connection is via (an extended version of) Gromov’s Theorem,
Theorem 1.7.

So, we fix now a very large prime power q and write F = Fq((t)), B = A3(F ) the
3-dimensional Bruhat–Tits building associated with PGL4(F ), X a non-partite Ra-
manujan quotient of B and Y = X(2), the 2-skeleton of X. In [LSV05], it was shown
that there are infinitely many such X’s with |X| → ∞. Our goal is to show that the
2-dimensional simplicial complex Y has the ε-topological overlapping property for
some ε > 0, depending maybe on q, but not on X or Y . This will prove Theorem 1.3
and answers Gromov’s question in the affirmative as every vertex of Y is contained
in at most O(q5) 2-cells.

To this end, we should show now that Y satisfies the assumption of Theorem 1.7.
Here d = 2 and we have to show that μi(Y ), i = 0, 1 are bounded from above and
systi(X), i = 0, 1 are bounded from below.

Let us start with the systole. As Y (1) = X(1) is connected, H0(Y, F2) = 0 and
so syst0(Y ) = ∞ and this case is trivial. The argument for syst1(Y ) is more in-
volved. Here, it is possible that H1(Y, F2) = H1(X, F2) is non zero (see Propo-
sition 3.5). So, let α ∈ Z1(Y, F2)\B1(Y, F2). If α is not locally minimal, then by
Proposition 2.5(1) we can replace it by a locally minimal α′ with ‖α′‖ ≤ ‖α‖ and
α′ ≡ α(mod Bi), so α′ is also in Z1(Y, F2)\B1(Y, F2). Thus, to prove the lower bound
on syst1(Y ), we can assume α is locally minimal and we claim now that ‖α‖ > η1,
for the η1 of Theorem 1.8. If not, then by that theorem, ‖δ1(α)‖ ≥ ε1‖α‖. But,
α ∈ Z1, so δ1(α) = 0 and hence α = 0, in contradiction to the assumption that
α /∈ B1.

We now turn to prove upper bounds on the filling norms μ0 and μ1 of Y . Let
β ∈ Bi+1(Y, F2), i = 0 or i = 1, so β = δi(α) for some α ∈ Ci(X, F2). We claim that
one can choose such α with

‖α‖ ≤ μi‖β‖, μi = max
(

1
ηi+1

,
2 − i

i + 2
m(i)

)
(11)

where ηi+1 is the one from Theorem 1.8 and m(i) is the one from Proposition 2.5,
i.e., the number of i-cells containing a vertex. To see this, assume first ‖β‖ > ηi+1.
As we always have ‖α‖ ≤ 1, (11) clearly holds, so assume ‖β‖ ≤ ηi+1. Apply
Proposition 2.5(1) for Y whose dimension is 2 and for i + 1: we can replace β by
a locally minimal β′ with β′ ≡ β( mod Bi+1), so β′ is also a coboundary, ‖β′‖ ≤
‖β‖, so ‖β′‖ ≤ ηi+1 and furthermore β′ = β + δi(γ) where γ ∈ Ci(X, F2) with
‖γ‖ ≤ ci‖β‖ when ci = 2−i

i+2m(i). Here m(i) is 1 when i = 0 and O(q4) for i =
1.
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As β′ is locally minimal in Ci+1(Y, F2) = Ci+1(X, F2) 1 and ‖β′‖ ≤ ηi+1, Theo-
rem 1.8 implies that ‖δi+1(β′)‖ ≥ εi+1‖β′‖. But, β′ ∈ Bi+1(Y, F2) = Bi+1(X, F2) ⊆
Zi+1(X, F2) so δi+1(β′) = 0 and hence β′ = 0. Thus, β = δi(γ) and again (11) is
valid and Theorem 1.3 is proved.

Remark 4.1. The reader should note that in order to prove that μ1 is bounded from
above, we have used δ2 : C2(X, F2) → C3(X, F2), i.e., we have used the 3-dimensional
complex X even though our result is for the 2-dimensional complex Y . This is the
crucial point which enables us to prove Theorem 1.3 for Y , while we do not know
the topological overlapping property for 2-dimensional Ramanujan complexes.

We finally note that the method of proof gives also a systolic inequity for X as
above:

Corollary 4.2. Let X be a non-partite Ramanujan complex of dimension 3 as
above. Then for i = 0, 1, 2, systi(X) ≥ νi for some constants νi > 0.

Proof. For i = 0, H0(X) = 0 and there is nothing to prove and for i = 1, syst1(X) =
syst1(Y ) where Y = X(2) and this was proved above. For i = 2, we can argue in a
similar way as before: if α ∈ Z2\B2 (such α can exist—see Proposition 3.6) we can re-
place it by a locally minimal one α′ and argue as before to deduce that ‖α′‖ ≥ η2. ��

5 Expansion of 1-Cochains in 2-Dimensional Ramanujan
Complexes

In this section we prove Theorem 1.10. We note that in this case every vertex (edge)
is in a constant number of triangles so the norm (on vertices or on edges) is the
normalized counting norm. It will be easier therefore to work here simply with the
counting norm |α| and in the end of the proof “to translate” the result to ‖α‖.

5.1 Proof of Theorem 1.10. So X is a Ramanujan complex of dimension 2.
Every vertex v has degree Q = 2(q2 + q + 1) and the link Xv at any vertex v is
the “lines versus points” graph of the projective plane P

2(Fq), which is a (q + 1)-
regular bipartite graph on 2(q2 + q + 1) points. The cochain α can be thought of as
a set of edges of X such that |αv| ≤ Q

2 for every v, since α is locally minimal (see
Proposition 2.5(2)).

Lemma 5.1. For i = 0, 1, 2, 3 denote by ti, the number of triangles of X which
contain exactly i edges from α. Then,

1. t1 + 2t2 + 3t3 = (q + 1)|α|.
2. |δ1(α)| = t1 + t3.
3.

∑
v∈X(0) |EXv

(αv, αv)| = 2t1 + 2t2.

1 Note that the norms in Ci+1(Y,F2) and Ci+1(X,F2) are the same since every 2-cells of X is
contained in exactly (q + 1) 3-cells of X.
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Here we consider αv, which is the set of edges of α touching v, as a set of vertices
of the link Xv. By αv we denote its complement there and EXv

(αv, αv) the set of
edges from αv to αv.

Proof. For (1) we recall that every edge lies on q + 1 triangles and a triangle which
contributes to ti contains i edges from α. Part (2) is simply the definition of δ1(α),
which is the set of all triangles containing an odd number of edges from α. For (3)
we argue as follows.

If � = {v0, v1, v2} is a triangle of X, then it contributes an edge at Xvk
({vk} =

{vi, vj , vk}\{vi, vj}). This is the edge between ei,k = (vi, vk) and ej,k = (vj , vk) when
we consider ei,k and ej,k as vertices of Xvk

. This edge will be in EXvk
(αvk

, αvk
) if and

only if exactly one of {ei,k, ej,k} is in α. A case by case analysis of the four possibilities
shows that if � has either 0 or 3 edges from α then � does not contribute anything
to the left hand sum. On the other hand, if it has either 1 or 2 edges, it contributes
2 to the sum. This proves the lemma. ��

Fix now a small ε > 0 to be determined later and define:

Definition 5.2. A vertex v of X is called thin w.r.t. α if |αv| < (1 − ε)Q
2 and thick

otherwise (recall that by our local minimality assumption, |αv| ≤ Q
2 for every v).

Denote

• W = {v ∈ V = X(0)| ∃e ∈ α with v ∈ e}.
• R = {v ∈ W | v thin}.
• S = {v ∈ W | v thick} = W\R.

Let r =
∑

v∈R |αv| and s =
∑

v∈S |αv|.

Lemma 5.3. r + s = 2|α|.

Proof. Every edge in α contributes 2 to the left hand side. ��

Lemma 5.4. 1. For every v ∈ V, |EXv
(αv, αv)| ≥ 1

2(q + 1 − √
q)|αv|.

2. If v is thin, then |EXv
(αv, αv)| ≥ (1+ε)

2 (q + 1 − √
q)|αv|.

Proof. As mentioned in Section 3.1, the link Xv is the “line versus points” graph of
the projective plane. It is a (q +1)-regular graph whose eigenvalues are ±(q +1) and
±√

q. Hence, λ1(Xv) = (q + 1) − √
q. Part 1 now follows from Proposition 2.1, and

similarly part 2. ��

We can deduce

Lemma 5.5. 2t1 + 2t2 ≥ (q + 1 − √
q)|α| + ε

2(q + 1 − √
q)r.
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Proof.

2t1 + 2t2 =
∑

v∈W

EXv
(αv, αv) =

∑

v∈R

EXv
(αv, αv) +

∑

v∈S

EXv
(αv, αv) (12)

≥
∑

v∈R

(1 + ε)
2

(q + 1 − √
q)|αv| +

∑

v∈S

1
2
(q + 1 − √

q)|αv| (13)

=
(1 + ε)

2
(q + 1 − √

q)r +
1
2
(q + 1 − √

q)s (14)

=
1
2
(q + 1 − √

q)(r + s) +
ε

2
(q + 1 − √

q)r (15)

= (q + 1 − √
q)|α| +

ε

2
(q + 1 − √

q)r. (16)

In the first equation we have used Lemma 5.1, part (3) and in the last one Lemma 5.3.
The inequality follows from Lemma 5.4. ��

Lemma 5.6. t1 − 3t3 ≥ ε
2(q + 1 − √

q)r − √
q|α|.

Proof. Subtract Equation (1) in Lemma 5.1 from the equation obtained in
Lemma 5.5. ��

Our goal now is to show that r, the contribution of the thin edges is at least
some fixed fraction of |α|. This will prove that for q large enough t1 ≥ cq|α| and this
will give the theorem. Up to now we have used only the local structure of X, the
links. Now we will use the global structure, the fact that its 1-skeleton is almost a
Ramanujan graph.

Lemma 5.7. The total number of edges in X(1) between the thick vertices is bounded
as follows:

|EX(1)(S)| ≤ |α|
(

1
(1 − ε)2(1 + ε0)

+
12q

(1 − ε)Q

)
.

Proof. Recall that by Corollary 3.4, the second largest eigenvalue of the adjacency
matrix of X(1) is bounded from above by 6q. So λ1(X(1)) ≥ Q − 6q = 2q2 − 4q + 1.
Note now that every vertex in S touches at least (1 − ε)Q

2 edges of α, hence |S| ≤
2|α|

(1−ε)Q

2

= 4|α|
(1−ε)Q . Proposition 2.1 implies therefore (when |X(0)| = n)

|E(S)| ≤ 1
2

(
Q − |S|

n
λ1(X(1))

)
|S| (17)

≤ 1
2

(
Q − |S|

n
(Q − 6q)

)
|S| =

1
2

(
Q

(
1 − |S|

n

)
+ 6q

|S|
n

)
|S| (18)

≤ 1
2

(
Q

|S|
n

+ 6q

)
|S| ≤ 1

2

(
4|α|

(1 − ε)n
+ 6q

)
|S|. (19)
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Note now that the assumption ‖α‖ ≤ 1
4(1+ε0)

means |α| ≤ Qn
8(1+ε0)

and hence,

|E(S)| ≤
(

2Q

8(1 − ε)(1 + ε0)
+ 3q

)
4|α|

(1 − ε)Q
= |α|

(
1

(1 − ε)2(1 + ε0)
+

12q

(1 − ε)Q

)
.

��

Proof of Theorem 1.10. We can now finish the proof of Theorem 1.10. Choose ε > 0
such that 1

(1−ε)2(1+ε0)
< 1 and then assume that q is sufficiently large such that

1
(1−ε)2(1+ε0)

+ 12q
(1−ε)Q < 1 − ξ < 1, for some ξ > 0. This now means by Lemma 5.7

that at most (1 − ξ) of the edges in α are between two thick vertices, namely, for at
least ξ|α| edges, one of their endpoints is thin. This implies that r ≥ ξ|α|. Plugging
this in Lemma 5.6, we get t1 ≥ ( ε

2(q +1−√
q)ξ −√

q)|α|. Again, if q is large enough
this means that |δ1(α)| ≥ t1 ≥ ε1q|α|.

Now for β ∈ C2(X, F2), ‖β‖ = |β|
|X(2)| . For α ∈ C1(X, F2), ‖α‖ = (q+1)|α|

2|X(2)| . Thus,

‖δ1(α)‖ = δ1(α)
|X(2)| ≥ ε1q|α|

|X(2)| = ε1q·3|X(2)|·‖α‖
(q+1)|X(2)| ≥ ε2‖α‖ for ε2 = 3 q

q+1ε1 ≥ 2ε1. Theo-
rem 1.10 is now proved. ��

The proof is effective. One can estimate ε2 and how large should be q, in term of
ε0. It is independent of q provided q is large enough.

Let us mention that along the way we have proved two facts which are worth
formulating separately.

Corollary 5.8. In the notations and assumptions as above. For every ε > 0, if
q ≥ q(ε) � 0, then we have:

1. If α ∈ B1(X, F2) is a locally minimal coboundary with ‖α‖ < 1
4(1+ε) then

α = 0.
2. If α ∈ Z1(X, F2)\B1(X, F2), then ‖α‖ > 1

4(1+ε) , In particular, every represen-

tative of a non-trivial cohomology class has linear size support.

This is the systolic inequality promised in Corollary 1.11 of the introduction.
Note that by Proposition 3.5, there are indeed cases with H1(X, F2) �= {0} so the
second item of Corollary 5.8 is a non-vacuous systolic result. Such results are of
potential interest also for quantum error-correcting codes (see [GL14,Zem09] and
the references therein).

6 Expansion of i-Cochains in 3-Dimensional Ramanujan
Complexes

In this section we prove Theorem 1.8 for the cases i = 0 and i = 1. Let us start with
the easier case—vertex expansion.
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6.1 Proof of Theorem 1.8 for the case i = 0. The case i = 0 of Theorem 1.8
is nothing more than the standard result asserting that X(1)—the 1-skeleton of X
is an expander graph. But, some care is needed here since the edges of X(1), when
considered as edges of a graph get equal weights, but when considered as edges of
the 3-dimensional complex X, have different weights. In fact, a black edge, i.e., one
corresponding to the 1 or 3 dimensional subspace in F

4
q , when we look at the links

of its vertices, has Θ-times the weight of a white edge (an edge which corresponds

to a 2-dimensional subspace of F
4
q) when Θ = cb1

cw1
=

(3
1)q

·(2
1)q

(2
1)q

·(2
1)q

= q2+q+1
q+1 ≈ q since a 1

or 3 dimensional subspace is contained in cb
1 =

(
3
1

)
q
· (2

1

)
q

maximal flags in F
4
q , while

a 2-dimensional subspace only in cw
1 =

(
2
1

)
q
· (2

1

)
q

such flags (where
(
d
k

)
q

denotes the
number of subspaces of codimension k in F

d
q).

Let α ∈ C0(X, F2) be a locally minimal 0-cochain of X, i.e., a minimal cochain
(see Section 2.3). So, α is a subset of the X(0)—the set of vertices of X—containing
at most half of the vertices (since all the vertices have the same weight). By Corol-
lary 3.4, λ1(X(1)) ≥ k − 44

√
k where k is the degree of the k-regular graph X(1), so

k ≈ q4. Now, Proposition 2.1 implies that

|δ0(α)| = |E(α, ᾱ)| ≥ |α||ᾱ|
|X(0)|(q

4 − 44q2) ≥ 1
2
(q4 − 44q2)|α|. (20)

In terms of norms:

‖α‖ = |α| · c0(
4
1

)|X(3)| (21)

where c0 is the number of 3-cells of X containing a vertex v. This number is inde-
pendent of v, equal to the number of maximal flags in F

4
q and it is approximately

q6. On the other hand, if β := δ0(α), β = βb + βw where βb (resp. βw) is the set of
black (resp. white) edges of β, then

‖δ0(α)‖ = ‖β‖ =
1

(
4
2

)|X(3)|(c
b
1|βb| + cw

1 |βw|) =
(q + 1)2
(
4
2

)|X(3)|(Θ|βb| + |βw|)

≥ (q + 1)2
(
4
2

)|X(3)| |β| =
(q + 1)2
(
4
2

)|X(3)| |δ0(α)|. (22)

Combining, (22), (20) and (21) we deduce:

‖δ0(α)‖ ≥ (q + 1)2
(
4
2

)|X(3)| |δ0(α)| ≥ (q + 1)2
(
4
2

)|X(3)|
1
2
(q4 − 44q2)|α|

=
(q + 1)2
(
4
2

)|X(3)|
1
2
(q4 − 44q2)

(
4
1

)|X(3)|
c0

‖α‖ ≥ ε0‖α‖. (23)

Case i = 0 of Theorem 1.8 is proven, with η0 = 1 and ε0 independent of q, since
c0 ≈ q6.
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6.2 Proof of Theorem 1.8 for the case i = 1. The main idea of the
proof is similar to the one that was shown in Section 5 for 1-cochains in Ramanujan
complexes of dimension 2, but here edges have different weights, so more care is
needed. Let α ∈ C1(X, F2) be a 1-cochain of a 3-dimensional non-partite Ramanujan
Complex X. The cochain α is a collection of edges of two types: black and white as
described in Section 3. The black (resp. white) ones, when considered as vertices in
the links of their end points, correspond to subspaces of dimension 1 or 3 (resp. 2)
in F

4
q and such an edge is contained in (q2 + q + 1)(q + 1) (resp. (q + 1)2) pyramids.

We denote by αb the set of black edges of α and by αw the set of white edges of α.
The weight of a black (resp. white) edge is w(eb) = (q2+q+1)(q+1)

(4
2)|X(3)| (resp. w(ew) =

(q+1)2

(4
2)|X(3)|). Denote Θ = w(eb)

w(ew) = q2+q+1
q+1 ≈ q. The norm of α is therefore

‖α‖ =
(q + 1)2
(
4
2

)|X(3)|(Θ|αb| + |αw|).

It will be convenient in this section to use also the following norm of α:

↑ α ↑= Θ|αb| + |αw|.
If v is a vertex of X, then as before αv is the set of edges of α with one endpoint

in v, and αb
v (resp. αw

v ) are the black (resp. white) ones. They give a 0-cochain
αv ∈ C0(Xv, F2) whose norm is

‖αv‖ =
(q2 + q + 1)(q + 1)

(
3
1

)|Xv(2)| |αb
v| +

(q + 1)2
(
3
1

)|Xv(2)| |α
w
v | =

(q + 1)2
(
3
1

)|Xv(2)|(Θ|αb
v| + |αw

v |).

Again, we denote

↑ αv ↑= Θ|αb
v| + |αw

v |.
Note that |Xv(2)| depends only on q, in fact, |Xv(2)| = (q3 + q2 + q +1)(q2 + q +

1)(q + 1) ≈ q6.
Since α is locally minimal, for every vertex v, αv is a minimal cochain of C0(Xv,

F2), i.e., αv is minimal in the coset αv +B0(Xv, F2), i.e., ‖αv‖ ≤ ‖αv +1Xv(0)‖. This
means that Θ|αb

v| + |αw
v | ≤ 1

2(Θ1b
Xv(0) + 1w

Xv(0)).
The righthand side is easily computed:

1b
Xv(0) =

(
4
1

)

q

+
(

4
3

)

q

= 2(q3 + q2 + q + 1) ≈ 2q3.

1w
Xv(0) =

(
4
2

)

q

=
(q3 + q2 + q + 1)(q2 + q + 1)

(q + 1)
≈ q4.

Thus, Θ|αb
v| + |αw

v | ≤ 1
2(Θ2

(
4
1

)
q
+

(
4
2

)
q
) ≈ 3

2q4.

Denote Q = Θ2
(
4
1

)
q
+

(
4
2

)
q

≈ 3q4, so ↑ αv ↑≤ Q
2 .
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Lemma 6.1. For i = 0, 1, 2, 3 denote by ti, the number of triangles of X which
contain exactly i edges from α. Then,

1. t1 + 2t2 + 3t3 = 2(q + 1) ↑ α ↑.
2. |δ1(α)| = t1 + t3.
3.

∑
v∈X(0) |EXv

(αv, αv)| = 2t1 + 2t2.

Proof. For (1) we recall that the number of triangles that contain a given black edge
is 2

(
3
1

)
q
. The number of triangles that contain a given white edge is 2(q + 1). A

triangle that contributes to ti contain i-edges from α. Thus:

t1 + 2t2 + 3t3 = 2
(

3
1

)

q

|αb| + 2(q + 1)|αw| = 2(q + 1)

( (
3
1

)
q

q + 1
|αb| + |αw|

)

= 2(q + 1)(Θ|αb| + |αw|) = 2(q + 1) ↑ α ↑ .

Part (2) follows from the definitions.
For (3): If � = {v0, v1, v2} is a triangle of X, then it contributes an edge at

Xvk
({vk} = {vi, vj , vk}\{vi, vj}). This is the edge between ei,k = (vi, vk) and

ej,k = (vj , vk) when we consider ei,k and ej,k as vertices of Xvk
. This edge will

be in EXvk
(αvk

, αvk
) if and only if exactly one of {ei,k, ej,k} is in α. A case by case

analysis of the four possibilities shows that if � has either 0 or 3 edges from α then
� does not contribute anything to the left hand sum. On the other hand, if it has
either 1 or 2 edges, it contributes 2 to the sum. This proves the lemma. ��

Fix now a small ε > 0 to be determined later and define:

Definition 6.2. A vertex v of X is called thin w.r.t. α if ↑ αv ↑< (1 − ε)Q
2 and

thick otherwise (recall that by our local minimality assumption, ↑ αv ↑≤ Q
2 for every

v).
Denote

• W = {v ∈ V = X(0)| ∃e ∈ α with v ∈ e}.
• R = {v ∈ W | v thin}.
• S = {v ∈ W | v thick} = W\R.

Let r =
∑

v∈R ↑ αv ↑ and s =
∑

v∈S ↑ αv ↑.

Lemma 6.3. r + s = 2 ↑ α ↑.

Proof. Every edge in αb contributes 2Θ to the left hand side and every edge of αw

contributes 2 to the left hand side. So, r + s = 2Θ|αb| + 2|αw| = 2 ↑ α ↑. ��

Lemma 6.4. 1. For every v ∈ V, |EXv
(αv, αv)| ≥ (q + 1 − √

12q) ↑ αv ↑ .
2. If v is thin, then |EXv

(αv, αv)| ≥ (1 + ε)(q + 1 − √
12q) ↑ αv ↑.
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Proof. Recall (see Section 3.1 and the notations there) that the link graph Xv is a
3-partite graph with parts M1, M2, M3, αv = T1 ∪ T2 ∪ T3 where Ti ⊆ Mi. We have,

|M1| = |M3| =
(

4
1

)

q

≈ q3,

while

|M2| =
(

4
2

)

q

≈ q4.

Assume now |Ti| = wi|Mi|. In the graph Z1,2: k′ = q2 + q + 1, k′′ = q + 1, the
largest eigenvalue is

√
(q + 1)(q2 + q + 1) ≈ q

3
2 , the second largest eigenvalue is√

q2 + q ≈ q +1. In the graph Z1,3: k′ = k′′ = q2 + q +1 ≈ q2, the largest eigenvalue
is q2 + q + 1 ≈ q2, the second largest eigenvalue is q.

Using now Proposition 2.2 we have:

E(T1, T2) ≤ q
3
2 |T1||T2|

q
7
2

+ (q + 1)
√

|T1||T2| =
1
q3

(q|T1| · |T2|) + (q + 1)
√

|T1||T2|.

E(T3, T2) ≤ q
3
2 |T3||T2|

q
7
2

+ (q + 1)
√

|T3||T2| =
1
q3

(q|T3| · |T2|) + (q + 1)
√

|T3||T2|.

E(T1, T3) ≤ q2|T1||T3|
q3

+ q
√

|T1||T3| =
1
q3

(q|T1| · q|T3|) + q
√

|T1||T3|.

Thus, |EXv
(αv, αv)| ≤ 1

q3 (q|T1|·|T2|+q|T1|·q|T3|+q|T3|·|T2|)+(q+1)(
√|T1||T2|+√|T3||T2| +

√|T1||T3|).
Now using the Maclaurin’s inequality (yz + yw + zw) ≤ 1

3(y + z + w)2 we get

|EXv
(αv, αv)| ≤ 1

q3
· 1
3
(q|T1| + |T2| + q|T3|)2 + (q + 1)(

√
|T1||T2|

+
√

|T3||T2| +
√

|T1||T3|) (24)

≤ 1
q3

· 1
3

↑ αv ↑2 +3
√

q(
√

q|T1| · |T2| + q|T3| · |T2| + q|T1| · q|T3|)
(25)

≤ 1
q3

· 1
3

↑ αv ↑2 +
√

3q ↑ αv ↑ . (26)

Since the degree of a vertex in M2 is 2(q + 1) while for a vertex in M1 ∪ M3 it is
2(q + 1)Θ, we obtain

|EXv
(αv, αv)| ≥ 2(q +1) ↑ αv ↑ − 1

q3 · 2
3 ↑ αv ↑2 −2

√
3q ↑ αv ↑= (2(q +1)− 1

q3 · 2
3 ↑

αv ↑ −√
12q) ↑ αv ↑.

Moreover, since ↑ αv ↑≤ Q
2 ≈ 3

2q4 we get:
|EXv

(αv, αv)| ≥ (2(q + 1) − 1
q3 · 2

3 · 3
2q4 − √

12q) ↑ αv ↑≥ (q + 1 − √
12q) ↑ αv ↑,

and Part 1 of the lemma is proved.
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Now, if v is thin then ↑ αv ↑≤ (1 − ε) · Q
2 = (1 − ε) · 3

2q4; so in this case:
|EXv

(αv, αv)| ≥ (2(q+1)− 1
q3 · 2

3 ·(1−ε)· 3
2q4−√

12q) ↑ αv ↑≥ (1+ε)(q+1−√
12q) ↑

αv ↑,
and Part 2 of the lemma is also proved. ��
We can deduce the following inequality

Lemma 6.5. 2t1 + 2t2 ≥ 2(q + 1 − √
12q) ↑ α ↑ +ε(q + 1 − √

12q)r.

Proof.

2t1 + 2t2 =
∑

v∈W

EXv
(αv, αv) =

∑

v∈R

EXv
(αv, αv) +

∑

v∈S

EXv
(αv, αv) (27)

≥
∑

v∈R

(1 + ε)(q + 1 −
√

12q) ↑ αv ↑ +
∑

v∈S

(q + 1 −
√

12q) ↑ αv ↑ (28)

= (1 + ε)(q + 1 −
√

12q)r + (q + 1 −
√

12q)s (29)

= (q + 1 −
√

12q)(r + s) + ε(q + 1 −
√

12q)r (30)

= 2(q + 1 −
√

12q) ↑ α ↑ +ε(q + 1 −
√

12q)r. (31)

In the first equation we have used Lemma 6.1, part (3) and in the last one Lemma 6.3.
The inequality follows from Lemma 6.4. ��
Lemma 6.6. t1 − 3t3 ≥ ε(q + 1 − √

12q)r − 2
√

12q ↑ α ↑.

Proof. Subtract Equation (1) in Lemma 6.1 form the equation obtained in
Lemma 6.5. ��

Our next goal now is to show the existence of η1 > 0, such that for every α with
‖α‖ ≤ η1, the contribution r of the thin edges, is at least some fixed fraction of
↑ α ↑. This will prove that for q large enough t1 ≥ cq ↑ α ↑, and the case i = 1 of
Theorem 1.8 will follow with a constant ε1, which is independent of q (for all q � 0).
Indeed,

‖δ1(α)‖ =
(q + 1)(t1(α) + t3(α))

(
4
3

)|X(3)| ≥ q · t1(α)
4|X(3)| ≥ cq2 ↑ α ↑

4|X(3)|

=
1

4|x(3)| ·
(
4
2

)|X(3)|
(q + 1)2

· cq2‖α‖ ≥ ε1‖α‖,

for a suitable constant ε1 ≥ 0.
Up to now we have used only the local structure of X. Now we will use the global

structure; the fact that its 1-skeleton is an almost Ramanujan graph.
Recall, that by Corollary 3.4, the second largest eigenvalue of the adjacency

matrix of X(1) is bounded from above by (d + 1)d+1
√

k ≈ 44
√

q4 = 44q2. Now the
degree of a vertex is k ≈ q4 so λ1(X(1)) ≥ q4 − 44q2. Note now that for every vertex
in S we have ↑ αv ↑≥ (1 − ε)Q

2 . So, every v ∈ S either touches at least (1−ε)q4

2 white
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edges or at least (1−ε)q3

2 black edges. Let us denote by Sb the vertices in which the
first case occurs and by Sw the vertices in which the second case occurs (it could be
that both cases occur at v). Then |Sb| ≤ 2|αb|

(1−ε)q3/2 and |Sw| ≤ 2|αw|
(1−ε)q4/2 .

Thus, |Sb ∪ Sw| ≤ |Sb| + |Sw| ≤ 2q|αb|
(1−ε)q·q3/2 + 2|αw|

(1−ε)q4/2 = 2
(1−ε)q4/2(q|αb| + |αw|) ≤

4
(1−ε)q4 ↑ α ↑.

Hence |S| ≤ 4↑α↑
(1−ε)q4 . Let n := |V | = |X(0)|, we have,

|E(S)| ≤ 1
2

(
q4 − |S|

n
λ1(X(1))

)
|S| (32)

≤ 1
2

(
q4 − |S|

n
(q4 − 44q2)

)
|S| =

1
2

(
q4

(
1 − |S|

n

)
+ 44q2 |S|

n

)
|S| (33)

≤ 1
2

(
q4 |S|

n
+ 44q2

)
|S| ≤ 1

2

(
4 ↑ α ↑
(1 − ε)n

+ 44q2

)
|S|. (34)

Note that we assumed that ‖α‖ ≤ η1. As ‖α‖ = (q+1)2

(4
2)|X(3)| ↑ α ↑ and |X(3)| ≈ n·q6

4 ,

we have,

↑ α ↑≤ 3
2
η1q

4n.

Hence,

|E(S)| ≤ 1
2

(
43

2η1q
4n

(1 − ε)n
+ 44q2

)

|S| (35)

≤
(

3η1q
4

(1 − ε)
+ 128q2

)
4 ↑ α ↑

(1 − ε)q4
(36)

≤
(

12η1

(1 − ε)2
+

512
(1 − ε)q2

)
↑ α ↑ . (37)

Thus, |E(S)| ≤ ( 12η1

(1−ε)2 + 512
(1−ε)q2 )(Θ|αb| + |αw|). Thus, for q � 0, only a small

fraction (less than μ = 12
(1−ε)q0.1 ) of the black edges are between thick vertices and

even a smaller fraction of the white ones. Namely, all the rest have at least one
thin end vertex. This implies that r ≥ (1 − μ)Θ|αb| + (1 − μ)|αw| = (1 − μ) ↑ α ↑.
Theorem 1.8 is now proved also for i = 1.

Let us mention that along the way we have proved two facts which are worth
formulating separately.

Corollary 6.7. In the notations and assumptions as above. If q � 0, then we
have:

1. If α ∈ B1(X, F2) is a locally minimal coboundary with ‖α‖ < 1
q1.1 then α = 0.

(If α �= 0, ‖α‖ ≤ 1
q1.1 = η1 and α is locally minimal then μ ≤ 12

(1−ε)q0.1 and

r ≥ (1 − μ) ↑ α ↑. Thus, by Lemma 6.6, we get that t1(α) ≥ cq ↑ α ↑).
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2. If α ∈ Z1(X, F2)\B1(X, F2) then ‖α‖ > η1. In particular, for a fixed q, every
representative of a non-trivial cohomology class has linear size support.

Proof. The first item follows immediately since δ(α) = 0. For the second item we
observe that every α ∈ Z1, can be replaced by a locally minimal representative α′

with ‖α′‖ ≤ ‖α‖ and α′ = α(mod B1). Applying now Theorem 1.8 for α′, we deduce
the result. ��
Remark 6.8. In our proof of the theorem ε1 turns out to be independent of q
(provided q � 0), but η1 does depend on q (we choose η1 ≈ 1

q1.1 ). One can improve
the proof to make also η1 independent of q by considering the “black skeleton” of
X, i.e., the subgraph of X(1) consisting of the black edges and only them.

Note that by Proposition 3.5, there are indeed cases with H1(X, F2) �= {0}, so
the second item of Corollary 6.7 is a non-vacuous systolic result. Such results are
of potential interest for quantum error-correcting codes (see [GL14,Zem09] and the
references therein).

We move now to the third case, i.e., i = 2, in which we have to prove 2-expansion.
This case is by far more difficult (and we have to overcome along the way the
difficulties of the case i = 1, but also much more.) This will be the topic of the next
section.

7 Expansion of 2-Cochains in 3-Dimensional Ramanujan
Complexes

In this section we prove the case i = 2 of Theorem 1.8. We prove that for q � 0,
there exists ε′′ > 0 such that if α ∈ C2(X, F2) is locally minimal with |α| < q3|X(0)|
then |δ(α)| ≥ ε′′q|α|. This indeed will prove the theorem: recall that every 2-cell
is contained in q + 1 pyramides and altogether there are approximately q6|X(0)|
pyramides. Thus,

‖α‖ ≈ (q + 1)|α|
(
4
3

)
q6|X(0)| ≈ c′ |α|

q5|X(0)| ,

and ‖δ(α)‖ = |δ(α)|
q6|X(0)| . Hence, we can deduce the result with μ3 = c′′

q2 and ε3 inde-
pendent of q (provided q � 0).

First recall again that the link Xv of every vertex v of X is the 2-dimensional
spherical building S(4, q). The vertices of Xv are of two types: the one corresponding
to subspaces of dimensions 1 and 3 of F

4
q , the black vertices, and the other type

corresponding to subspaces of dimension 2, which we call the white vertices. A black
vertex is of degree 2(q2 + q + 1), while a white one is of degree 2(q + 1). There are
approximately q3 black vertices and approximately q4 white ones.

Given a vertex v, an edge e of X, with v ∈ e, gives a unique vertex in Xv, which
can be black or white, and we then call e black or white, accordingly. As degrees of
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black and white vertices are different, the edge e gets the same color from both its
end points.

We start with local considerations. Since α ∈ C2(X, F2) is locally minimal, for
every edge e of X, |αe| ≤ |Xe(0)|

2 . Indeed, α being locally minimal means that for
every vertex v of X, αv ∈ C1(Xv, F2) is minimal and, in particular, it is locally
minimal as a cochain of Xv. Thus, at every vertex w of Xv αv contains at most
half of the edges around w. This exactly means that the number of triangles in α
containing e is at most half of all the triangles containing e.

For i = 0, . . . , 4 we denote by ti the number of pyramides (3-cells) in X which
contain exactly i triangles of α.

Lemma 7.1. 1.
∑

e∈X(1) |αe| = 3|α|.
2. t1 + 2t2 + 3t3 + 4t4 = (q + 1)|α|.

Proof. The first item follows from the fact that every triangle has three edges. The
second is because every triangle is contained in exactly q + 1 pyramides. ��
Lemma 7.2.

∑
e∈X(1) EXe

(αe, αe) = 3t1 + 4t2 + 3t3.

Proof. Recall that αe can be considered as a set of vertices in the (q + 1)-regular
graph Xe, which is the link of X at e. If P is a pyramid with one triangle from α,
then for 3 out of the 6 edges of P , |αe| = 1 and for 3 of them |αe| = 0. The first 3
contributes, each, 1 to the left hand side and the later have no contribution. If P
has 2 triangles from α, then for one edge |αe| = 2 but this edge contributes nothing
to the LHS, since P represents then an edge of Xe from αe to αe. For 4 other edges
of P , |αe| = 1 and each contributes 1 to the LHS. For the last edge, |αe| = 0 and
clearly no contribution to the LHS. A similar consideration justifies the claim about
the 3t3 contribution (or by duality to t1). Pyramids with either 0 or 4 triangles from
α contributes nothing to the LHS. ��
Definition 7.3 (Thin/thick edge). An edge e ∈ X(1) is called thin if |αe| ≤
|Xe(0)|0.9 and thick otherwise.
Denote:
R (resp. S)—the set of thin (resp. thick) edges.
r :=

∑
e∈R |αe|.

s :=
∑

e∈S |αe|.
So, by Lemma 7.1, r + s = 3|α|.
The link graph Xe of every edge e of X is either the “points versus lines graph” of

the projective plane P2(q) over Fq or the complete (q+1)-bipartite graph on 2(q+1)
vertices. Indeed, if e is a white edge, Xe is the complete bipartite (q+1)-regular graph
on 2(q + 1) vertices. While if e is black, Xe is the “points versus lines” graph of the
projective plane of Fq, i.e., (q+1)-regular bipartite on 2(q2+q+1) vertices. When e is
a thick/thin edge of X, we will also consider it as thick/thin vertex of Xv, for v ∈ e.
In either case, λ1(Xe) ≥ q + 1 − √

q. The next lemma follows from Proposition 2.1.
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Lemma 7.4. 1. For every e ∈ X(1), EXe
(αe, αe) ≥ 1

2(q + 1 − √
q)|αe|.

2. If e is thin then EXe
(αe, αe) ≥ (q + 1 − q0.9)|αe|.

Proof. The first item is deduced directly from Proposition 2.1. For the second item,
assume first that e is white. In this case Proposition 2.1 gives:

EXe
(αe, αe) ≥ 2(q + 1) − (2(q + 1))0.9

2(q + 1)
(q + 1 − √

q)|αe|

=
(

1 − 1
(2(q + 1))0.1

)
(q + 1 − √

q)|αe| ≥ (q + 1 − q0.9)|αe|,

as q is large. Similarly this is also true for black edges. ��
Combining Lemmas 7.2 and 7.4 we get:

Lemma 7.5. 3t1 + 4t2 + 3t3 ≥ 3
2(q + 1)|α| + (q+1)

2 r − 3q0.9|α|.
Proof.

3t1 + 4t2 + 3t3 =
∑

e∈S

EXe
(αe, αe) +

∑

e∈R

EXe
(αe, αe) (38)

≥ 1
2
(q + 1 − √

q)s + (q + 1 − q0.9)r (39)

≥ 3
2
(q + 1)|α| +

(q + 1)
2

r − 3q0.9|α|. (40)

��
Subtracting twice Lemma 7.1(2) from the equation proved in Lemma 7.5 we

get:

Lemma 7.6. t1 − 3t3 − 8t4 ≥ − (q+1)
2 |α| + (q+1)

2 r − 3q0.9|α|.
Thus, in order to prove Theorem 1.8, it will suffice to prove that r > (1+ε′)|α| for

some ε′ (independent of q) when q is large. I.e., more than 1
3 of the contribution to α

comes from thin edges. It is interesting to compare this with the proof in Section 5
for dim X = 2, where we had only to show that r ≥ ε|α|. This is what makes the
current proof more difficult.

Let us now use a global argument.

Definition 7.7 (Thin/thick vertex). A vertex v ∈ X(0) is called a thin vertex if
in its link, Xv, there are less than q2.75 thick black vertices and less than q3.7 thick
white vertices. Otherwise it is called a thick vertex. Let S0 denote the set of thick
vertices, and R0—the thin ones.

For every v ∈ X(0), our cochain α defines a 1-cochain αv ∈ C1(Xv, F2).

Lemma 7.8. 1. If v is a thick vertex then |αv| ≥ q4.55

2 .
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2. The number of thick vertices is at most 6|α|
q4.55 , i.e., |S0| ≤ 6|α|

q4.55 .

3. |S0| ≤ 6n
q1.55 , where n := |X(0)|.

Proof. 1. If v is a thick vertex than it lies on either at least q2.75 black thick edges
or on at least q3.7 white thick edges. A black (resp. white) thick edge is contained
in at least (2(q2 + q + 1))0.9 (resp. (2(q + 1))0.9) triangles. The same triangle can be
counted twice according to its two edges which touch v, but in any case it means
that there are at least q4.55

2 edges in αv.
2. By (1), every thick vertex touches at least q4.55

2 triangles from α. A triangle
touches 3 vertices, so it can be counted at most 3 times. Hence |S0| ≤ 6|α|

q4.55 .
3. Follows from the fact that |α| ≤ q3n. ��
As X(1) is “almost” a Ramanujan graph we can prove:

Lemma 7.9. For q � 0, |E(S0, S0)| ≤ 19
q2.1 |α|.

Proof. The graph X(1) is a k-regular graph with k =
∑3

i=1

(
4
i

)
q

≈ q4 and λ1(X(1)) ≥
k − 44

√
k (see Corollary 3.4). Thus, by Proposition 2.1, |E(S0, S0)| ≥ S0

n (k −
44

√
k)|S0|. Hence,

|E(S0, S0)| =
1
2
(k|S0| − |E(S0, S0)|) (41)

≤ 1
2

(
k|S0| − |S0|

n
(k − 44

√
k)|S0|

)
(42)

=
|S0|
2

(
k

(
1 − |S0|

n

)
+

|S0|
n

44
√

k

)
(43)

=
|S0|
2

(
k
|S0|
n

+
|S0|
n

44
√

k

)
(44)

≤ |S0|
2

(
k
|S0|
n

+ 44
√

k

)
. (45)

Now by Lemma 7.8, |E(S0, S0)| ≤ 3|α|
q4.55 (q4 6

q1.55 + 44q2) ≤ 19|α|
q2.1 . ��

Thus, for q large enough, only small proportion of the triangles in α have two
(or more) thick vertices. Indeed, the total number of edges between thick vertices
is bounded by 20

q2.1 |α| and on every edge there are at most q2 + q + 1 triangles from
α. So we have the following corollary, from which we conclude that almost every
triangle of α has at most one thick vertex.

Corollary 7.10. There are at most 20
q0.1 |α| triangles with 2 or 3 thick vertices.

Now we show that almost all the triangles in α have at least one thin edge.

Lemma 7.11. 1. The number of triangles of α with at least one thin edge is at
least (1 − oq(1))|α|.
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2. The fraction of triangles of α with 3 thin vertices and at most one thin edge is
oq(1).

Both parts of the lemma follow from the following result:

Lemma 7.12. Let v be a thin vertex of X, Xv its link, and αv the 1-cochain of Xv

induced by α. Let Sv be the subset of Xv(0) of the thick vertices of Xv, i.e., the ones
corresponding to the thick edges of X coming out of v. Then:

|E(Sv, Sv)|
|αv| = oq(1).

Namely, only a negligible amount of the triangles touching v have two thick edges
containing v.

Proof. The link Xv is isomorphic to S(4, q), so Sv can be considered as a subset of
M = M1 ∪ M2 ∪ M3 of the subspaces of F

4
q , where Mi is the set of subspaces of

dimension i. Let Ti = Sv ∩Mi. As v is a thin vertex of X, Definition 7.7 implies that
|T2| < q3.7 and |T1 ∪ T3| < q2.75. On the other hand, every w ∈ Sv corresponds to
a thick edge e of X. Hence, by Definition 7.3, e lies on at least |Xe(0)|0.9 triangles
from α, or in other words αv has at least (deg (w))0.9 edges coming out of w. Now,
if w ∈ T1 ∪ T3, deg(w) = 2(q + 1), while if w ∈ T2, deg(w) = 2(q2 + q + 1), thus all
the assumptions of Lemma 3.2 are satisfied and our lemma follows. ��

Let us spell out the meaning of the last lemma. Lemma 7.12 says that if v is a
thin vertex of X, and � is a triangle in α containing v, then quite likely that at
least one of the edges of � touching v is thin.

We next show that Lemma 7.11 follows from Lemma 7.12.

Proof of Lemma 7.11. As we saw above in Corollary 7.10, almost all the triangles of
α have at least one thin vertex and hence, by Lemma 7.12 and the remark afterwards,
at least one of the edges of the triangle adjacent to it is thin (with probability
1 − oq(1)). This proves Lemma 7.11(1).

Similarly, consider the triangles of α with three thin vertices and at most one
thin edge, namely, those with three thin vertices and at least two thick edges. Each
such a triangle � contributes 1 to |E(Sv, Sv)| for a vertex v that is between its
two thick edges (using the notations of Lemma 7.11). Thus the total number T of
such triangles is bounded by

∑
v∈R0

|E(Sv, Sv)|, where R0 is the set of thin vertices.
By Lemma 7.11, we have that |E(Sv,Sv)|

|αv| = oq(1). Thus, T ≤ ∑
v∈R0

|E(Sv, Sv)| ≤
∑

v∈R0
oq(1)|αv| ≤ oq(1) · 3|α|. I.e., the fraction of triangles of α with 3 thin vertices

and at least two thick edges is oq(1). This proves Lemma 7.11(2). ��
Let now state a general observation about any cochain β ∈ C2(X, F2). Such β

induces two cochains on the link Xv of every vertex v: One is β1
v = βv ∈ C1(X, F2)

that we have used so far, and the other is β2
v ∈ C2(Xv, F2) which is defined just by

restricting β to the triangles of Xv, when we recall that the link of v is the set of
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simplicies τ of X s.t. v /∈ τ and τ ∪ {v} is also a simplex of X. The next proposition
follows from the definitions.

Proposition 7.13. If β ∈ C2(X, F2) then

|δ2β| =
1
4

∑

v∈X(0)

|δ1β
1
v + β2

v | ≥ 1
4

⎛

⎝
∑

v∈X(0)

|δ1β
1
v | −

∑

v∈X(0)

|β2
v |

⎞

⎠

=
1
4

⎛

⎝
∑

v∈X(0)

|δ1β
1
v |

⎞

⎠ − (q + 1)
4

|β|.

Proof. Recall that δ2β is the set of 3-cells of X which contain an odd number of
triangles from β. The first equality is just summing up over the vertices v of X:
the number of such 3-cells of δ2β touching v is indeed the same as the number of
triangles in δ1β

1
v + β2

v . Note that the last sum is modulo 2. The inequality follows
for the subadditivity of the norm | · |. The last equality follows from the fact that
every triangle of X is inside q + 1 pyramids and hence

∑
v∈X(0) |β2

v | = (q + 1)|β|. ��
We are now ready to complete the proof of Theorem 1.8. Recall that by Propo-

sition 3.1 there exists 0 < ε(4) such that for every minimal 1-cochain ϕ of S(4, q),
‖δ1(ϕ)‖ ≥ 3ε(4)‖ϕ‖. Now, since every edge in S(4, q) is contained in q + 1 triangles,
it follows that |δ1(ϕ)| ≥ ε(4)(q + 1)|ϕ|.

Write our α as γ0 + γ1 + γ2 + γ3 where γi is the subset of all the triangles of α

which have exactly i thick vertices. Assume first that |γ0| > ε(4)
100 |α|. This means that

ε(4)
100 fraction of the triangles of α have no thick vertex. For such a triangle, almost
surely, (when q � 0), at least 2 edges are thin (Lemma 7.11(1)). In addition, we
know that almost every triangle of α has at least one thin edge (Lemma 7.11(1)).
Thus, r > (1 + ε(4)

100 − oq(1))|α| and Lemma 7.6 now finishes the proof.
Assume therefore that |γ0| < ε(4)

100 |α|. Note that by Corollary 7.10, |γ2 + γ3| ≤
20
q0.1 |α|.

Thus,

|γ1| = |α − γ0 − γ2 − γ3| ≥ |α| − ε(4)
100

|α| − 20
q0.1

|α| ≥
(

1 − ε(4)
50

)
|α|, for q � 0.

On the other hand, as in Proposition 7.13,

|δ2(γ1)| ≥ 1
4

⎛

⎝
∑

v∈X(0)

|δ1γ
1
1,v + γ2

1,v|
⎞

⎠ ≥ 1
4

(
∑

v∈S0

|δ1γ
1
1,v + γ2

1,v|
)

≥ 1
4

(
∑

v∈S0

|δ1γ
1
1,v|

)

− 1
4

∑

v∈S0

|γ2
1,v|,

where S0 is the set of thick vertices.
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Now note: by our assumption, α is locally minimal, i.e., α1
v is minimal (i.e. closest

possible to B1(Xv, F2) in its coset), the same is true for γ1
1,v, as the later is a subset

of α1
v and hence also minimal. Thus,
∑

v∈S0

|δ1γ
1
1,v| ≥

∑

v∈S0

ε(4)(q + 1)|γ1
1,v| = ε(4)(q + 1)

∑

v∈S0

|γ1
1,v| = ε(4)(q + 1)|γ1|.

The last equality is true since every triangle of γ1 has a unique thick vertex.
Let us now evaluate

∑
v∈S0

|γ2
1,v|. Note that γ2

1,v gives 1 only to pyramids con-
taining v as well as another thick vertex, and just one like that. Thus,

∑
v∈S0

|γ2
1,v|

is bounded by twice the number of pyramids with two thick vertices. Recall that by
Lemma 7.9, E(S0, S0) < 20

q2.1 |α|. Every pyramids with two thick vertices contains an
edge from E(S0, S0). On such an edge there are at most 2(q2 + q + 1) triangles and
on each triangle (q + 1) pyramids. This implies that

∑

v∈S0

|γ2
1,v| < 2

20
q2.1

|α| · 2(q2 + q + 1) · (q + 1) ≤ 100q0.9|α|.

Putting the last three inequalities together we get that,

|δ2(γ1)| ≥ 1
4
ε(4)(q + 1)|γ1| − 25q0.9|α|.

Finally we can compute:

|δ2α| = |δ2(γ0 + γ1 + γ2 + γ3)| (46)
≥ |δ2(γ1)| − |δ2(γ0)| − |δ2(γ2 + γ3)| (47)

≥ 1
4
ε(4)(q + 1)|γ1| − 25q0.9|α| − (q + 1)

ε(4)
100

|α| − (q + 1)
20
q0.1

|α|. (48)

We used here the fact that for every β ∈ C2(X, F2), |δ2β| ≤ (q +1)|β|, and also that
we are now under the assumption that |γ0| < ε(4)

100 |α| and |γ2 + γ3| < 20
q0.1 |α|.

Now, |γ1| ≥ (1 − ε(4)
50 )|α| and altogether

|δ2α| ≥ 1
4
ε(4)(q + 1)

(
1 − ε(4)

50

)
|α| − (q + 1)

ε(4)
100

|α| − 25q0.9|α| − (q + 1)
20
q0.1

|α|

≥ ε(4)(q + 1)|α|
(

1
4

− ε(4)
200

− 1
100

)
− 50q0.9|α|.

As ε(4)(1
4 − ε(4)

200 − 1
100) ≥ 0.2ε(4) we get:

|δ2α| ≥ 0.2ε(4)(q + 1)|α| − 50q0.9|α| ≥ 0.1ε(4)(q + 1)|α|.

for q sufficiently large and Theorem 1.8 is proved.
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Remark 7.14. Theorem 1.8 was proved with ε0, ε1, ε2 that are absolute constant
independent of q (provided q � 0). So are μ0 and μ1, but μ2 = c′′

q2 depends on q. It
is interesting and somewhat useful to know if μ2 can be made to be independent of
q.

We have the following systolic corollary:

Corollary 7.15. For q � 0, if α ∈ C2(X, F2) represents a non-trivial 2-cohomology
class than |α| ≥ q3|X(0)|.

8 Coboundary Expanders and the Congruence Subgroup Property

Theorem 1.7 implies that coboundary expanders are topological expanders. Theo-
rem 1.3 gives, for d = 2, a family {Ya} of topological expanders. But, our family
falls short of being a family of coboundary expanders. In fact, Proposition 1.5 shows
that for many of them H1(Ya, F2) �= 0 which violates the expansion property. On the
other hand, our proofs of Theorem 1.3 shows that this is the only obstacle i.e., these
complexes that we construct for the proof of Theorem 1.3 (i.e., the 2-skeletons of
3-dimensional non-partite Ramanujan complexes) would be coboundary expanders
if their first cohomology over F2 would vanish. Indeed, we prove their cocycle ex-
pansion; If H1 = 0, this is the same as coboundary expansion for Ya. The goal of
this short section is to explain that, assuming a very special case of a conjecture of
Serre [Ser70], infinitely many of the examples we constructed have indeed vanishing
1-cohomology. Hence they form an infinite family of bounded degree 2-dimensional
coboundary expanders.

Let us recall the following standard definitions: Let k be a global field, i.e.,
a finite extension of Q or a field of transcendental degree 1 over Fq in the posi-
tive characteristic case, O the ring of integers of k, S a finite set of valuations of
k including all the archimedean ones, and OS = {x ∈ k|ν(x) ≥ 0, ∀ν /∈ S}-the
ring of S-integers. Let G be a simply connected, connected, simple algebraic group
defined over k with a k-embedding G ↪→ GLn and G(OS) = G

⋂
GLn(OS). We

say that G(OS) has the congruence subgroup property if the “congruence kernel”:
C(G, S) = Ker(Ĝ(OS) → G(ÔS)) is finite, where ( .̂ ) denotes the profinite com-
pletion. The reader is referred to [Ser70,PR97,Rag04] for details and history of this
problem. Serre [Ser70] conjectured that this is indeed the case if S-rank(G) ≥ 2, i.e.,
if

∑
v∈S kv-rank(G) ≥ 2.

We are interested in the Cartwright–Steger arithmetic lattice - the CS-lattice.
This discrete co-compact subgroup of PGLd(Fq((t))) is an arithmetic group. More
precisely, there exists a simply connected, connected simple algebraic group with k
and OS as above with a map (with a compact kernel and cokernel) ϕ : πv∈SG(kv) →
PGLd(Fq((t))), such that ϕ(G(OS)) is commensurable to the CS-lattice. By a slight
abuse of notation, we will work with Γ = G(OS) as the CS-lattice (see [CS98,LSV05]
for a detailed construction and [Lub13] for an exposition.) The S-rank of G is d− 1.
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For the case used in this paper for Theorem 1.3 d = 4, and the S-rank equals 3, so it
is covered by Serre’s conjecture. While Serre’s conjecture has been proven for “most”
cases, the special case of the CS-lattices is still open (see [PR97,Rag04] for a survey
of the current knowledge). Let us say first, that assuming Serre’s conjecture for the
CS-lattice, the congruence kernel is not just finite, but actually trivial. Indeed, in
this case the Margulis-Platonov conjecture (on the finite index subgroups of G(k))
is known to hold [RS01,Rag04] and as explained in [PR97] if C(G, S) is finite, it is
also central and isomorphic to the metaplectic kernel of G with respect to k and S.
This metaplectic kernel has been computed by Prasad and Rapinchuk [PR] and in
our case is trivial.

Assume now that the Serre’s Conjecture indeed holds in our case, where d = 4
and q a fixed large odd prime power q = pr. Then for the CS-lattice Γ = G(OS),
Ĝ(OS) = G(ÔS). The simplicial complexes used for the proof of Theorem 1.3 are
Xa = Γa\B when B = A3(Fq((t))) and where Γa are congruence subgroups of Γ,
and Xa are non-partite. As explained in [LSV05], Γa can be taken to be a principle
congruence subgroup of the form Γ(I) = Ker(G(OS) → G(OS/I)) when I � OS .
Moreover Theorem 7.1 there ensures that for every sufficiently large e there exists
an irreducible polynomial f(x) of degree e, so that if I = (f(x)) is the ideal generated
by f(x), XI = Γ(I)\B is non-partite. Now, the assumption that Ĝ(OS) = G(ÔS)
implies that for such an I, Γ̂(I) = Kvf

× ∏
v �=vf

G(OS,v), where for a valuation v of
k, OS,v is the v-completion of OS , vf is the valuation associated with f(x) and Kvf

is the normal subgroup of G(OS,vf
), Kvf

= Ker(G(OS,vf
) → G(OS,vf

/f(x)OS,vf
)).

The group Kvf
is a pro-p group and each of G(OS,v) is an extension of a pro-p group

by a quasi-simple finite group. As p is odd, it follows that [Γ̂(I), Γ̂(I)]Γ̂(I)
2

= Γ̂(I),
i.e., Γ̂(I) has no quotient that is abelian of order 2. The same holds therefore for
Γ(I). Hence, H1(Γ(I), F2) = 0. Now, as the building B is contractible, it follows that
H1(XI , F2) = 0. Finally, YI , the 2-skeleton of XI , satisfies H1(YI , F2) = H1(XI , F2)
and so H1(YI , F2) = 0 as promised. We can summarize:

Corollary 8.1. Assume that for some large odd prime power q, the Cartwright–
Steger arithmetic lattice of PGL4(Fq((t))) satisfies the congruence subgroup prop-
erty (as predicted by Serre’s conjecture). Then there exists an infinite family of
bounded degree 2-dimensional coboundary expanders.

Remark 8.2. In fact, a much weaker assumption than Serre’s Conjecture is needed.
Namely, Serre predicts that C = C(G, S) is trivial (in our case). We only need that
C/([C, C]C2) is trivial.
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